已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)

推论 计算机科学 编码器 潜变量 人工智能 空间分析 培训(气象学) 模式识别(心理学) 机器学习 数据挖掘 地理 遥感 气象学 操作系统
作者
Arian Prabowo,Hao Xue,Wei Shao,Piotr Koniusz,Flora D. Salim
出处
期刊:Data Mining and Knowledge Discovery [Springer Nature]
卷期号:38 (3): 913-937 被引量:1
标识
DOI:10.1007/s10618-023-00982-0
摘要

Abstract New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub: https://github.com/cruiseresearchgroup/forecasting-on-new-roads .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WH发布了新的文献求助10
2秒前
2秒前
cici发布了新的文献求助10
2秒前
6秒前
6秒前
Josie完成签到 ,获得积分10
6秒前
8秒前
TS发布了新的文献求助10
10秒前
欧阳完成签到 ,获得积分10
12秒前
14秒前
儒雅的傲芙完成签到,获得积分10
14秒前
Hello应助HR112采纳,获得30
15秒前
Liver完成签到,获得积分20
16秒前
幸福的蜜粉完成签到,获得积分10
18秒前
Liver发布了新的文献求助10
21秒前
共享精神应助黙宇循光采纳,获得10
24秒前
高大的曼寒完成签到,获得积分10
25秒前
俏皮火完成签到 ,获得积分10
28秒前
受伤的妙之应助WH采纳,获得10
29秒前
29秒前
玳瑁猫发布了新的文献求助10
29秒前
丘比特应助堀江真夏采纳,获得10
30秒前
即将高产sci完成签到,获得积分10
31秒前
31秒前
31秒前
黙宇循光发布了新的文献求助10
34秒前
35秒前
科研通AI2S应助柔柔采纳,获得10
36秒前
夏惋清完成签到 ,获得积分0
36秒前
皮卡皮卡完成签到,获得积分10
37秒前
gg发布了新的文献求助10
37秒前
郭郭要努力ya完成签到 ,获得积分10
39秒前
39秒前
yy完成签到 ,获得积分10
39秒前
老肖应助Liver采纳,获得10
41秒前
予秋发布了新的文献求助10
42秒前
恢复出厂设置完成签到 ,获得积分10
42秒前
宰宰小熊给宰宰小熊的求助进行了留言
44秒前
张非凡完成签到 ,获得积分10
44秒前
顺心曼香完成签到,获得积分20
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161877
求助须知:如何正确求助?哪些是违规求助? 2813104
关于积分的说明 7898643
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316350
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129