Development and Validation of Multiple Linear Regression Models for Predicting Chronic Zinc Toxicity to Freshwater Microalgae

环境化学 线性回归 慢性毒性 环境科学 毒性 化学 溶解有机碳 数学 统计 有机化学
作者
Gwilym A. V. Price,Jennifer L. Stauber,Dianne F. Jolley,Darren J. Koppel,Eric J. Van Genderen,Adam C. Ryan,Aleicia Holland
出处
期刊:Environmental Toxicology and Chemistry [Wiley]
卷期号:42 (12): 2630-2641 被引量:1
标识
DOI:10.1002/etc.5749
摘要

Multiple linear regression (MLR) models were developed for predicting chronic zinc toxicity to a freshwater microalga, Chlorella sp., using three toxicity-modifying factors (TMFs): pH, hardness, and dissolved organic carbon (DOC). The interactive effects between pH and hardness and between pH and DOC were also included. Models were developed at three different effect concentration (EC) levels: EC10, EC20, and EC50. Models were independently validated using six different zinc-spiked Australian natural waters with a range of water chemistries. Stepwise regression found hardness to be an influential TMF in model scenarios and was retained in all final models, while pH, DOC, and interactive terms had variable influence and were only retained in some models. Autovalidation and residual analysis of all models indicated that models generally predicted toxicity and that there was little bias based on individual TMFs. The MLR models, at all effect levels, performed poorly when predicting toxicity in the zinc-spiked natural waters during independent validation, with models consistently overpredicting toxicity. This overprediction may be from another unaccounted for TMF that may be present across all natural waters. Alternatively, this consistent overprediction questions the underlying assumption that models developed from synthetic laboratory test waters can be directly applied to natural water samples. Further research into the suitability of applying synthetic laboratory water-based models to a greater range of natural waters is needed. Environ Toxicol Chem 2023;42:2630-2641. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
共享精神应助woshiwuziq采纳,获得20
1秒前
dongqi完成签到,获得积分10
1秒前
Cody应助文件撤销了驳回
1秒前
隐形曼青应助欣慰寄风采纳,获得10
2秒前
TTT发布了新的文献求助10
2秒前
一色完成签到,获得积分10
2秒前
3秒前
张泽辉发布了新的文献求助10
3秒前
情怀应助虫子采纳,获得10
3秒前
善学以致用应助guan采纳,获得10
3秒前
研友_nvebxL完成签到,获得积分10
4秒前
拉拉发布了新的文献求助10
4秒前
释然完成签到,获得积分10
4秒前
wanci应助QZF采纳,获得10
5秒前
6秒前
FashionBoy应助恸哭的千鸟采纳,获得10
6秒前
小郭呀完成签到,获得积分10
6秒前
田様应助淡定的晓刚采纳,获得10
7秒前
Jasper应助TTT采纳,获得10
8秒前
阿O发布了新的文献求助10
8秒前
科研通AI2S应助lwl666采纳,获得30
8秒前
归尘发布了新的文献求助20
8秒前
8秒前
大模型应助EvaHo采纳,获得10
9秒前
科研通AI5应助林少玮采纳,获得10
9秒前
科研通AI5应助gce采纳,获得30
10秒前
ONION关注了科研通微信公众号
11秒前
samuealndjw发布了新的文献求助200
11秒前
CodeCraft应助woshiwuziq采纳,获得10
11秒前
3045672982发布了新的文献求助10
11秒前
11秒前
乐观啤酒应助owlhealth采纳,获得10
12秒前
乐乐关注了科研通微信公众号
12秒前
乐观啤酒应助张泽辉采纳,获得10
14秒前
小二郎应助芝麻球ii采纳,获得10
14秒前
万能图书馆应助魔幻冷风采纳,获得20
15秒前
酷波er应助元半仙采纳,获得10
15秒前
634301059发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630