Correlating oxygen functionalities and electrochemical durability of carbon supports for electrocatalysts

材料科学 耐久性 碳纤维 电催化剂 X射线光电子能谱 电化学 电解质 石墨烯 质子交换膜燃料电池 化学工程 炭黑 电化学能量转换 催化作用 纳米技术 电极 化学 复合材料 复合数 有机化学 物理化学 工程类 天然橡胶
作者
Luka Pavko,Matija Gatalo,Tina Đukić,Francisco Ruiz-Zepeda,Angelja Kjara Šurca,Martin Šala,Nik Maselj,Primož Jovanovič,Marjan Bele,Matjaž Finšgar,Boštjan Genorio,Nejc Hodnik,Miran Gaberšček
出处
期刊:Carbon [Elsevier BV]
卷期号:215: 118458-118458 被引量:1
标识
DOI:10.1016/j.carbon.2023.118458
摘要

Achieving high durability of the polymer electrolyte membrane (PEM) fuel cell catalysts remains a major challenge. While most of the research focuses on the active phase, carbon support remains overlooked. In this study durability of carbon support materials for Pt alloy nanoparticles is critically evaluated. First graphene derivative (GD) based carbon supports with different chemical properties are prepared and utilized along with widely used commercial carbon black (CB) material. High-temperature electrochemical accelerated degradation tests (HT-ADTs) combined with X-ray photoelectron spectroscopy (XPS) show that the total amount of oxygen functionalities, the type of oxygen functionalities, and sp2 carbon content play a crucial role in carbon support durability. The observations were confirmed with the direct online measurements of carbon corrosion via an advanced in-situ technique – an electrochemical cell coupled with a mass spectrometer (EC-MS). We report that increasing the content of sp2 carbon and decreasing carboxyl functional groups have the most beneficial effect on stability. The study provides important guidelines for tailoring the carbon support properties and their relationship to the durability of the electrocatalyst, which could be crucial for producing more stable catalysts and achieving the Department of Energy's fuel cell system lifetime targets. Moreover, the innovative carbon design approach presented here could be applied in other fields such as batteries, supercapacitors, sensors and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不喝可乐发布了新的文献求助10
刚刚
Rondab应助科研通管家采纳,获得30
刚刚
Owen应助科研通管家采纳,获得10
1秒前
只因发布了新的文献求助10
1秒前
汉堡包应助直率的菠萝采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
嵤麈完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
迷人寻冬应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
fffyy完成签到,获得积分10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
烟花应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
Jyhad完成签到 ,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
Jasper应助roc采纳,获得10
2秒前
孙朱珠完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
魏寒冰完成签到 ,获得积分10
5秒前
迪迦奥特曼完成签到,获得积分10
6秒前
pharrah完成签到,获得积分10
6秒前
眼睛大的梦松完成签到 ,获得积分10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060