计算机科学
SIMD公司
核(代数)
编译程序
代码生成
矢量化(数学)
数字信号处理
并行计算
工作流程
计算机体系结构
程序优化
超长指令字
过程(计算)
端到端原则
数字信号处理器
编码(集合论)
指令集
计算机工程
程序设计语言
计算机硬件
人工智能
操作系统
组合数学
数据库
数学
钥匙(锁)
集合(抽象数据类型)
作者
Xiaolei Zhao,Zhaoyun Chen,Yang Shi,Mei Wen,Chunyun Zhang
标识
DOI:10.1109/dac56929.2023.10247901
摘要
Digital signal processors (DSPs) commonly adopt VLIW-SIMD architecture and are extensively applied in most compute-heavy embedded sensing applications. The performances for DSP kernels rely heavily on compilations and handwritten optimizations. Hand-crafted methods suffer from heavy burden on programmers, while state-of-the-art automatic compilation methods always focus more on a certain aspect (tiling or auto-vectorization), lacking of global and sequential vision on the intact compilation optimization process. It still requires empirical adjustments by programmers in the actual scenario.In order to release programmers from kernel tuning, we propose JOKer, an automatic end-to-end multi-level code generator for kernel joint optimization on DSPs. JOKer integrates means of optimizations in compiling process and provides an end-to-end workflow for performance tuning. It explores compilation configurations through a reinforcement learning based agent for global optimal solution and generates high performance kernel codes for DSPs automatically.
科研通智能强力驱动
Strongly Powered by AbleSci AI