An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:157
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers' outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. Note to Practitioners — This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time $t$ remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小董完成签到,获得积分20
2秒前
BENpao123发布了新的文献求助10
2秒前
所所应助无问西东采纳,获得10
3秒前
3秒前
4秒前
bombing2048完成签到 ,获得积分10
5秒前
Hello应助谦让寄容采纳,获得10
5秒前
香蕉觅云应助Wenyilong采纳,获得10
5秒前
7秒前
lml发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
刻苦秋尽完成签到,获得积分20
8秒前
空白发布了新的文献求助10
8秒前
justin完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
科研通AI6应助lex采纳,获得10
10秒前
11秒前
Darius发布了新的文献求助10
12秒前
12秒前
CodeCraft应助现代芷波采纳,获得10
12秒前
12秒前
YH发布了新的文献求助10
13秒前
sdf完成签到,获得积分20
15秒前
无问西东发布了新的文献求助10
15秒前
15秒前
lrz发布了新的文献求助10
15秒前
小芒果完成签到,获得积分10
16秒前
17秒前
瘦瘦彩虹完成签到,获得积分10
17秒前
Chiwen发布了新的文献求助10
17秒前
谦让寄容发布了新的文献求助10
17秒前
Painkiller_发布了新的文献求助10
17秒前
Gamera完成签到 ,获得积分10
20秒前
20秒前
核桃发布了新的文献求助10
21秒前
Zuguo发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648