已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:231
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers&#x2019; outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. <italic>Note to Practitioners</italic>&#x2014; This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time <inline-formula> <tex-math notation="LaTeX">$t$</tex-math> </inline-formula> remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐炫发布了新的文献求助10
1秒前
炙热的雨双完成签到 ,获得积分10
1秒前
Freddie发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
缥缈的背包完成签到 ,获得积分10
5秒前
wyx完成签到 ,获得积分10
5秒前
6秒前
7秒前
25778完成签到 ,获得积分10
8秒前
zbzfp发布了新的文献求助10
8秒前
亚米完成签到,获得积分10
9秒前
9秒前
11秒前
壮观的绿旋关注了科研通微信公众号
13秒前
13秒前
旭滟发布了新的文献求助10
14秒前
15秒前
CGFHEMAN完成签到 ,获得积分10
17秒前
可乐发布了新的文献求助10
19秒前
wanwan524完成签到 ,获得积分10
20秒前
Ambi发布了新的文献求助80
21秒前
22秒前
默默善愁完成签到,获得积分10
22秒前
旭滟完成签到,获得积分20
22秒前
慕青应助笑点低中心采纳,获得10
23秒前
乐观期待完成签到,获得积分10
24秒前
短腿小柯基完成签到 ,获得积分10
27秒前
李爱国应助Lebpom采纳,获得10
27秒前
28秒前
29秒前
Jasper应助jasonyang123456采纳,获得10
30秒前
皮皮完成签到 ,获得积分10
30秒前
33秒前
小蘑菇应助蟑螂不偷油采纳,获得10
33秒前
37秒前
39秒前
55完成签到,获得积分10
39秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338