An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

趋同(经济学) 计算机科学 控制理论(社会学) 人工神经网络 反推 控制器(灌溉) 非线性系统 自适应控制 外稃(植物学) 区间(图论) 控制工程 人工智能 工程类 控制(管理) 数学 生态学 物理 禾本科 量子力学 组合数学 农学 经济 生物 经济增长
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:74
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers’ outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. Note to Practitioners — This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time $t$ remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助明天肯定学习采纳,获得10
1秒前
2秒前
4秒前
难过的箴完成签到 ,获得积分10
4秒前
4秒前
Kalimba完成签到,获得积分10
4秒前
鱼女士完成签到,获得积分10
5秒前
ldysaber完成签到,获得积分0
6秒前
大曼曼曼曼完成签到,获得积分10
6秒前
戚雅柔完成签到 ,获得积分10
8秒前
10秒前
脑洞疼应助热心小松鼠采纳,获得10
10秒前
10秒前
科研通AI2S应助热心小松鼠采纳,获得10
10秒前
NexusExplorer应助热心小松鼠采纳,获得10
11秒前
xcwy完成签到,获得积分10
11秒前
如愿完成签到 ,获得积分0
12秒前
默幻弦发布了新的文献求助10
12秒前
伞兵一号卢本伟完成签到 ,获得积分10
12秒前
杨亚倩完成签到 ,获得积分10
12秒前
bz发布了新的文献求助30
14秒前
白嫖论文完成签到 ,获得积分10
14秒前
春华秋实发布了新的文献求助10
17秒前
大模型应助Wang采纳,获得10
17秒前
111完成签到,获得积分10
18秒前
科研通AI2S应助yandq采纳,获得10
18秒前
YanDongXu完成签到 ,获得积分10
20秒前
Sun1c7完成签到,获得积分10
20秒前
帅比4完成签到,获得积分10
22秒前
mkljl完成签到 ,获得积分10
22秒前
科研通AI2S应助111采纳,获得10
22秒前
22秒前
23秒前
老迟到的幼枫完成签到,获得积分10
24秒前
锂为什么叫做锂完成签到,获得积分10
24秒前
花阳年华完成签到 ,获得积分10
25秒前
yidemeihaoshijie完成签到 ,获得积分10
25秒前
英姑应助专注的猎豹采纳,获得10
25秒前
Anonymous发布了新的文献求助10
26秒前
好困应助超帅的凌翠采纳,获得30
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134053
求助须知:如何正确求助?哪些是违规求助? 2784853
关于积分的说明 7768983
捐赠科研通 2440314
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792