An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:231
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers&#x2019; outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. <italic>Note to Practitioners</italic>&#x2014; This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time <inline-formula> <tex-math notation="LaTeX">$t$</tex-math> </inline-formula> remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游悠悠发布了新的文献求助10
刚刚
刚刚
风趣飞柏发布了新的文献求助10
刚刚
han发布了新的文献求助10
刚刚
劳恩特应助熊芳妮采纳,获得30
1秒前
wangyang完成签到 ,获得积分10
1秒前
1秒前
爆米花应助tao采纳,获得80
1秒前
1秒前
小心胖虎完成签到,获得积分20
2秒前
2秒前
dong0511发布了新的文献求助10
3秒前
共享精神应助小张医生采纳,获得10
4秒前
bkagyin应助jy采纳,获得30
4秒前
4秒前
5秒前
5秒前
LIKO完成签到,获得积分10
6秒前
7秒前
7秒前
Yiyyan发布了新的文献求助30
7秒前
搜集达人应助小鲤鱼本鱼采纳,获得10
8秒前
古枂完成签到,获得积分10
8秒前
舒适花瓣完成签到,获得积分10
9秒前
情怀应助蝶步韶华采纳,获得10
9秒前
9秒前
junjunjun发布了新的文献求助10
10秒前
xzlijingjing发布了新的文献求助10
10秒前
10秒前
子忧发布了新的文献求助10
11秒前
11秒前
mdomse2109完成签到,获得积分10
12秒前
alisa完成签到 ,获得积分20
12秒前
13秒前
112发布了新的文献求助10
13秒前
1851611453完成签到 ,获得积分10
14秒前
眉洛完成签到,获得积分10
15秒前
传奇3应助灵山剑侠采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294