An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:119
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers' outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. Note to Practitioners — This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time $t$ remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wells应助快乐旭尧采纳,获得10
刚刚
小马发布了新的文献求助10
1秒前
orixero应助忐忑的尔容采纳,获得10
2秒前
2秒前
华仔应助靓仔要亮采纳,获得10
2秒前
keeryu完成签到,获得积分10
3秒前
崔尔蓉完成签到,获得积分10
3秒前
3秒前
luo发布了新的文献求助10
3秒前
4秒前
占那个完成签到 ,获得积分10
4秒前
4秒前
louge完成签到,获得积分10
5秒前
科研通AI6应助zzxx采纳,获得10
5秒前
6秒前
旧雨新知完成签到 ,获得积分10
6秒前
7秒前
walu完成签到,获得积分10
7秒前
彩色世倌发布了新的文献求助10
7秒前
Hohaha发布了新的文献求助10
8秒前
9秒前
9秒前
max完成签到,获得积分10
9秒前
快乐旭尧完成签到,获得积分10
12秒前
LXY171发布了新的文献求助20
12秒前
walu发布了新的文献求助20
12秒前
丁浩伦应助小火锅采纳,获得10
12秒前
QQ发布了新的文献求助10
13秒前
Hazel发布了新的文献求助10
15秒前
11111完成签到,获得积分10
15秒前
小蘑菇应助颜林林采纳,获得10
15秒前
小马完成签到,获得积分10
16秒前
顾矜应助科研通管家采纳,获得10
17秒前
不想干活应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
不想干活应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
Zz应助科研通管家采纳,获得10
18秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888