An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:157
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers' outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. Note to Practitioners — This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time $t$ remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbj完成签到 ,获得积分10
刚刚
青年才俊发布了新的文献求助10
刚刚
刚刚
Oil完成签到,获得积分10
刚刚
1秒前
一颗小纽扣完成签到,获得积分10
2秒前
斯文败类应助李李李采纳,获得10
2秒前
科研小白发布了新的文献求助10
2秒前
脑洞疼应助荔枝采纳,获得10
2秒前
芋泥芝士发布了新的文献求助10
3秒前
科研王完成签到 ,获得积分10
3秒前
斯文败类应助胡慧婷采纳,获得10
4秒前
4秒前
Chaimengdi完成签到,获得积分10
4秒前
刘璐发布了新的文献求助10
5秒前
kermitds发布了新的文献求助20
5秒前
hzh发布了新的文献求助10
7秒前
爆米花应助微笑笑萍采纳,获得30
7秒前
鲤鱼诗桃发布了新的文献求助10
7秒前
万能图书馆应助yytt采纳,获得10
8秒前
刘骁萱完成签到 ,获得积分10
9秒前
曾无忧完成签到,获得积分10
9秒前
哈吉米曼波完成签到,获得积分10
10秒前
10秒前
10秒前
小蘑菇应助白baibbb采纳,获得10
10秒前
xzlijingjing完成签到 ,获得积分10
11秒前
终日梦鱼完成签到 ,获得积分10
11秒前
12秒前
完美世界应助陶陶采纳,获得10
13秒前
RogerCHEN完成签到,获得积分10
13秒前
矿矿完成签到,获得积分10
13秒前
bobochi发布了新的文献求助10
13秒前
13秒前
感动帅哥完成签到,获得积分10
14秒前
顺其自然发布了新的文献求助10
14秒前
橙子完成签到,获得积分20
16秒前
hzh完成签到,获得积分10
17秒前
17秒前
heyihu发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097035
求助须知:如何正确求助?哪些是违规求助? 4309550
关于积分的说明 13427646
捐赠科研通 4136934
什么是DOI,文献DOI怎么找? 2266413
邀请新用户注册赠送积分活动 1269483
关于科研通互助平台的介绍 1205787