An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:231
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers&#x2019; outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. <italic>Note to Practitioners</italic>&#x2014; This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time <inline-formula> <tex-math notation="LaTeX">$t$</tex-math> </inline-formula> remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yike发布了新的文献求助10
1秒前
1秒前
碧海流花完成签到,获得积分10
1秒前
赘婿应助小yo超爱学采纳,获得10
1秒前
今后应助杜薇薇采纳,获得10
1秒前
张皓123完成签到,获得积分10
1秒前
charlie完成签到,获得积分10
1秒前
Ade阿德完成签到,获得积分10
2秒前
2秒前
2秒前
脑洞疼应助狗大王采纳,获得30
3秒前
漠之梦完成签到,获得积分10
3秒前
张雯雯发布了新的文献求助10
4秒前
4秒前
科研通AI6应助B站萧亚轩采纳,获得10
4秒前
英姑应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
万信心完成签到,获得积分10
5秒前
完美世界应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得10
5秒前
科研通AI6应助B站萧亚轩采纳,获得30
5秒前
共享精神应助B站萧亚轩采纳,获得10
5秒前
研友_VZG7GZ应助B站萧亚轩采纳,获得10
5秒前
英俊的铭应助Annie采纳,获得10
5秒前
独特天问完成签到,获得积分10
5秒前
Ksharp10完成签到,获得积分10
5秒前
852应助ly采纳,获得10
5秒前
5秒前
SciGPT应助Key采纳,获得10
6秒前
小王完成签到 ,获得积分10
6秒前
6秒前
wpp完成签到,获得积分10
7秒前
7秒前
情怀应助盛乾亮采纳,获得10
7秒前
8秒前
dong发布了新的文献求助10
8秒前
大古完成签到,获得积分10
8秒前
怡然浩然完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731