Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features

疾病 帕金森病 认知功能衰退 认知 计算机科学 机器学习 人工智能 数据科学 痴呆 医学 神经科学 心理学 病理
作者
Hannes Almgren,Milton Camacho,Alexandru Hanganu,Mekale Kibreab,Richard Camicioli,Zahinoor Ismail,Nils D. Forkert,Oury Monchi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:13
标识
DOI:10.1038/s41598-023-37644-6
摘要

Abstract Patients with Parkinson’s Disease (PD) often suffer from cognitive decline. Accurate prediction of cognitive decline is essential for early treatment of at-risk patients. The aim of this study was to develop and evaluate a multimodal machine learning model for the prediction of continuous cognitive decline in patients with early PD. We included 213 PD patients from the Parkinson’s Progression Markers Initiative (PPMI) database. Machine learning was used to predict change in Montreal Cognitive Assessment (MoCA) score using the difference between baseline and 4-years follow-up data as outcome. Input features were categorized into four sets: clinical test scores, cerebrospinal fluid (CSF) biomarkers, brain volumes, and genetic variants. All combinations of input feature sets were added to a basic model, which consisted of demographics and baseline cognition. An iterative scheme using RReliefF-based feature ranking and support vector regression in combination with tenfold cross validation was used to determine the optimal number of predictive features and to evaluate model performance for each combination of input feature sets. Our best performing model consisted of a combination of the basic model, clinical test scores and CSF-based biomarkers. This model had 12 features, which included baseline cognition, CSF phosphorylated tau, CSF total tau, CSF amyloid-beta 1-42 , geriatric depression scale (GDS) scores, and anxiety scores. Interestingly, many of the predictive features in our model have previously been associated with Alzheimer’s disease, showing the importance of assessing Alzheimer’s disease pathology in patients with Parkinson’s disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任某人发布了新的文献求助10
1秒前
1秒前
123456789完成签到,获得积分10
2秒前
顿顿吃不饱完成签到,获得积分20
2秒前
虚拟的画板完成签到 ,获得积分10
2秒前
科研通AI6应助酷炫远山采纳,获得10
3秒前
电池小能手完成签到,获得积分10
3秒前
柳青发布了新的文献求助30
3秒前
lei完成签到,获得积分10
4秒前
李健应助LY采纳,获得10
4秒前
小恐龙发布了新的文献求助10
4秒前
4秒前
mmyhn应助米基哈采纳,获得20
5秒前
6秒前
华子完成签到 ,获得积分10
7秒前
李小晴天完成签到,获得积分10
7秒前
方法完成签到,获得积分10
8秒前
我是老大应助顿顿吃不饱采纳,获得10
8秒前
时翎完成签到,获得积分10
8秒前
田様应助冯露瑶采纳,获得10
8秒前
8秒前
duo完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
李健的小迷弟应助kiki采纳,获得10
11秒前
研友_VZG7GZ应助shaco采纳,获得10
11秒前
脑洞疼应助Aer采纳,获得10
11秒前
11秒前
11发布了新的文献求助10
12秒前
养乐多完成签到 ,获得积分10
12秒前
晨丶完成签到,获得积分10
12秒前
科研菜鸡完成签到,获得积分10
13秒前
shadow发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助默默采纳,获得10
14秒前
15秒前
阿文发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474