亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features

疾病 帕金森病 认知功能衰退 认知 计算机科学 机器学习 人工智能 数据科学 痴呆 医学 神经科学 心理学 病理
作者
Hannes Almgren,Milton Camacho,Alexandru Hanganu,Mekale Kibreab,Richard Camicioli,Zahinoor Ismail,Nils D. Forkert,Oury Monchi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:13
标识
DOI:10.1038/s41598-023-37644-6
摘要

Abstract Patients with Parkinson’s Disease (PD) often suffer from cognitive decline. Accurate prediction of cognitive decline is essential for early treatment of at-risk patients. The aim of this study was to develop and evaluate a multimodal machine learning model for the prediction of continuous cognitive decline in patients with early PD. We included 213 PD patients from the Parkinson’s Progression Markers Initiative (PPMI) database. Machine learning was used to predict change in Montreal Cognitive Assessment (MoCA) score using the difference between baseline and 4-years follow-up data as outcome. Input features were categorized into four sets: clinical test scores, cerebrospinal fluid (CSF) biomarkers, brain volumes, and genetic variants. All combinations of input feature sets were added to a basic model, which consisted of demographics and baseline cognition. An iterative scheme using RReliefF-based feature ranking and support vector regression in combination with tenfold cross validation was used to determine the optimal number of predictive features and to evaluate model performance for each combination of input feature sets. Our best performing model consisted of a combination of the basic model, clinical test scores and CSF-based biomarkers. This model had 12 features, which included baseline cognition, CSF phosphorylated tau, CSF total tau, CSF amyloid-beta 1-42 , geriatric depression scale (GDS) scores, and anxiety scores. Interestingly, many of the predictive features in our model have previously been associated with Alzheimer’s disease, showing the importance of assessing Alzheimer’s disease pathology in patients with Parkinson’s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crillzlol完成签到,获得积分10
1秒前
王晓静完成签到 ,获得积分10
12秒前
科研通AI2S应助海峰采纳,获得10
14秒前
上官若男应助alexa采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
22秒前
海峰发布了新的文献求助10
27秒前
28秒前
30秒前
cyr完成签到,获得积分10
36秒前
CipherSage应助明理妙柏采纳,获得10
38秒前
ddcc完成签到,获得积分10
41秒前
朱文韬发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
49秒前
52秒前
丘比特应助ddcc采纳,获得10
52秒前
Mono完成签到 ,获得积分10
57秒前
明理妙柏发布了新的文献求助10
57秒前
冰糖葫芦娃完成签到,获得积分10
1分钟前
PAIDAXXXX完成签到,获得积分10
1分钟前
Panjiao完成签到 ,获得积分10
1分钟前
1分钟前
123关闭了123文献求助
1分钟前
1分钟前
恰知发布了新的文献求助30
1分钟前
eritinn发布了新的文献求助10
1分钟前
张张爱科研完成签到,获得积分10
1分钟前
sunce1990完成签到 ,获得积分10
1分钟前
1分钟前
海峰完成签到,获得积分10
1分钟前
1分钟前
百里守约完成签到 ,获得积分10
1分钟前
汉堡包应助恰知采纳,获得10
1分钟前
eritinn完成签到,获得积分10
1分钟前
小地蛋完成签到 ,获得积分10
1分钟前
甜蜜的翠柏完成签到,获得积分10
1分钟前
心灵美鑫完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789585
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056