Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features

疾病 帕金森病 认知功能衰退 认知 计算机科学 机器学习 人工智能 数据科学 痴呆 医学 神经科学 心理学 病理
作者
Hannes Almgren,Milton Camacho,Alexandru Hanganu,Mekale Kibreab,Richard Camicioli,Zahinoor Ismail,Nils D. Forkert,Oury Monchi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:13
标识
DOI:10.1038/s41598-023-37644-6
摘要

Abstract Patients with Parkinson’s Disease (PD) often suffer from cognitive decline. Accurate prediction of cognitive decline is essential for early treatment of at-risk patients. The aim of this study was to develop and evaluate a multimodal machine learning model for the prediction of continuous cognitive decline in patients with early PD. We included 213 PD patients from the Parkinson’s Progression Markers Initiative (PPMI) database. Machine learning was used to predict change in Montreal Cognitive Assessment (MoCA) score using the difference between baseline and 4-years follow-up data as outcome. Input features were categorized into four sets: clinical test scores, cerebrospinal fluid (CSF) biomarkers, brain volumes, and genetic variants. All combinations of input feature sets were added to a basic model, which consisted of demographics and baseline cognition. An iterative scheme using RReliefF-based feature ranking and support vector regression in combination with tenfold cross validation was used to determine the optimal number of predictive features and to evaluate model performance for each combination of input feature sets. Our best performing model consisted of a combination of the basic model, clinical test scores and CSF-based biomarkers. This model had 12 features, which included baseline cognition, CSF phosphorylated tau, CSF total tau, CSF amyloid-beta 1-42 , geriatric depression scale (GDS) scores, and anxiety scores. Interestingly, many of the predictive features in our model have previously been associated with Alzheimer’s disease, showing the importance of assessing Alzheimer’s disease pathology in patients with Parkinson’s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huang完成签到,获得积分10
1秒前
陈雅玲完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
Ansong发布了新的文献求助10
1秒前
meizijiu完成签到,获得积分10
1秒前
wanci应助12采纳,获得10
2秒前
浮游应助无别事采纳,获得10
2秒前
ZZY发布了新的文献求助10
2秒前
赘婿应助菠菜采纳,获得50
2秒前
wuxunxun2015完成签到,获得积分10
2秒前
2秒前
彭于晏应助橙子采纳,获得10
3秒前
Zer0发布了新的文献求助10
4秒前
5秒前
顺心电话完成签到,获得积分10
5秒前
淮安石河子完成签到 ,获得积分10
5秒前
顾家老攻完成签到,获得积分10
5秒前
6秒前
1056720198完成签到,获得积分20
6秒前
winwing发布了新的文献求助10
7秒前
lilili发布了新的文献求助30
7秒前
Ambi发布了新的文献求助10
8秒前
KhalilHao发布了新的文献求助10
8秒前
9秒前
搜集达人应助TEN采纳,获得10
9秒前
9秒前
10秒前
儒雅的菠萝吹雪完成签到,获得积分10
10秒前
10秒前
多情高丽发布了新的文献求助10
11秒前
大胆寒风发布了新的文献求助10
11秒前
Jasper应助往昔北人采纳,获得10
12秒前
12秒前
lzl完成签到,获得积分10
12秒前
12秒前
12秒前
tsumu发布了新的文献求助10
12秒前
小二郎应助Aoooo采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143