Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features

疾病 帕金森病 认知功能衰退 认知 计算机科学 机器学习 人工智能 数据科学 痴呆 医学 神经科学 心理学 病理
作者
Hannes Almgren,Milton Camacho,Alexandru Hanganu,Mekale Kibreab,Richard Camicioli,Zahinoor Ismail,Nils D. Forkert,Oury Monchi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:13
标识
DOI:10.1038/s41598-023-37644-6
摘要

Abstract Patients with Parkinson’s Disease (PD) often suffer from cognitive decline. Accurate prediction of cognitive decline is essential for early treatment of at-risk patients. The aim of this study was to develop and evaluate a multimodal machine learning model for the prediction of continuous cognitive decline in patients with early PD. We included 213 PD patients from the Parkinson’s Progression Markers Initiative (PPMI) database. Machine learning was used to predict change in Montreal Cognitive Assessment (MoCA) score using the difference between baseline and 4-years follow-up data as outcome. Input features were categorized into four sets: clinical test scores, cerebrospinal fluid (CSF) biomarkers, brain volumes, and genetic variants. All combinations of input feature sets were added to a basic model, which consisted of demographics and baseline cognition. An iterative scheme using RReliefF-based feature ranking and support vector regression in combination with tenfold cross validation was used to determine the optimal number of predictive features and to evaluate model performance for each combination of input feature sets. Our best performing model consisted of a combination of the basic model, clinical test scores and CSF-based biomarkers. This model had 12 features, which included baseline cognition, CSF phosphorylated tau, CSF total tau, CSF amyloid-beta 1-42 , geriatric depression scale (GDS) scores, and anxiety scores. Interestingly, many of the predictive features in our model have previously been associated with Alzheimer’s disease, showing the importance of assessing Alzheimer’s disease pathology in patients with Parkinson’s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助rosyw采纳,获得10
刚刚
1秒前
小伙子很不错完成签到 ,获得积分10
2秒前
Alaskan发布了新的文献求助10
3秒前
徐茂瑜完成签到 ,获得积分10
4秒前
5秒前
tong发布了新的文献求助10
6秒前
xss完成签到 ,获得积分10
6秒前
线条完成签到 ,获得积分10
7秒前
7秒前
CH发布了新的文献求助10
7秒前
清澜庭完成签到,获得积分10
8秒前
Alaskan完成签到,获得积分20
8秒前
精明思烟完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
wsfwsf01完成签到,获得积分10
11秒前
陶醉觅夏发布了新的文献求助10
11秒前
王硕硕完成签到,获得积分10
11秒前
大白狐狸完成签到,获得积分10
12秒前
dxxx007完成签到,获得积分10
13秒前
JIERAN完成签到 ,获得积分10
14秒前
娆疆第一深情完成签到,获得积分10
14秒前
14秒前
14秒前
细心无声完成签到 ,获得积分10
15秒前
duonicola发布了新的文献求助10
15秒前
茶暖桉呀发布了新的文献求助10
15秒前
张小小发布了新的文献求助10
15秒前
Wang完成签到,获得积分10
16秒前
16秒前
黑梦完成签到,获得积分20
16秒前
星期五发布了新的文献求助10
16秒前
搞怪的定帮关注了科研通微信公众号
17秒前
17秒前
18秒前
弗洛伊航发布了新的文献求助20
18秒前
19秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119313
求助须知:如何正确求助?哪些是违规求助? 2769781
关于积分的说明 7702337
捐赠科研通 2425194
什么是DOI,文献DOI怎么找? 1288031
科研通“疑难数据库(出版商)”最低求助积分说明 620760
版权声明 599962