已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DropKey for Vision Transformer

计算机科学 利用 变压器 人工智能 地铁列车时刻表 下降(电信) 瓶颈 电压 工程类 嵌入式系统 计算机安全 电气工程 电信 操作系统
作者
Bonan Li,Yinhan Hu,Xuecheng Nie,Congying Han,Xiangjian Jiang,Tiande Guo,Luoqi Liu
标识
DOI:10.1109/cvpr52729.2023.02174
摘要

In this paper, we focus on analyzing and improving the dropout technique for self-attention layers of Vision Transformer, which is important while surprisingly ignored by prior works. In particular, we conduct researches on three core questions: First, what to drop in self-attention layers? Different from dropping attention weights in literature, we propose to move dropout operations forward ahead of attention matrix calculation and set the Key as the dropout unit, yielding a novel dropout-before-softmax scheme. We theoretically verify that this scheme helps keep both regularization and probability features of attention weights, alleviating the overfittings problem to specific patterns and enhancing the model to globally capture vital information; Second, how to schedule the drop ratio in consecutive layers? In contrast to exploit a constant drop ratio for all layers, we present a new decreasing schedule that gradually decreases the drop ratio along the stack of self-attention layers. We experimentally validate the proposed schedule can avoid overfittings in low-level features and missing in high-level semantics, thus improving the robustness and stableness of model training; Third, whether need to perform structured dropout operation as CNN? We attempt patch-based block-version of dropout operation and find that this useful trick for CNN is not essential for ViT. Given exploration on the above three questions, we present the novel Drop-Key method that regards Key as the drop unit and exploits decreasing schedule for drop ratio, improving ViTs in a general way. Comprehensive experiments demonstrate the effectiveness of DropKey for various ViT architectures, e.g. T2T, VOLO, CeiT and DeiT, as well as for various vision tasks, e.g., image classification, object detection, human-object interaction detection and human body shape recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
刚刚
开心岩应助科研通管家采纳,获得10
刚刚
Grayball应助科研通管家采纳,获得10
刚刚
悟123完成签到 ,获得积分10
1秒前
7秒前
jjjj完成签到,获得积分10
9秒前
曹兆发布了新的文献求助30
11秒前
yang完成签到 ,获得积分10
15秒前
17秒前
17秒前
cqyczc完成签到 ,获得积分10
25秒前
会发光的碳完成签到,获得积分10
29秒前
xie完成签到 ,获得积分10
32秒前
Keyl完成签到,获得积分10
41秒前
Tethys完成签到 ,获得积分10
44秒前
葱油饼完成签到 ,获得积分10
46秒前
46秒前
斯文败类应助小王采纳,获得10
47秒前
汪姝发布了新的文献求助10
51秒前
專注完美近乎苛求完成签到 ,获得积分10
52秒前
害怕的煎蛋完成签到,获得积分10
52秒前
54秒前
科研王完成签到 ,获得积分10
1分钟前
iorpi完成签到,获得积分10
1分钟前
YifanWang应助害怕的煎蛋采纳,获得20
1分钟前
飞鱼z完成签到 ,获得积分10
1分钟前
就看最后一篇完成签到 ,获得积分10
1分钟前
1分钟前
rzxhygr发布了新的文献求助10
1分钟前
孝艺完成签到 ,获得积分10
1分钟前
1分钟前
张靖超完成签到 ,获得积分10
1分钟前
小王发布了新的文献求助10
1分钟前
1分钟前
小王完成签到,获得积分10
1分钟前
葡紫明完成签到 ,获得积分10
1分钟前
1分钟前
俏皮的初之完成签到,获得积分10
1分钟前
搜集达人应助Newky采纳,获得10
1分钟前
欣喜的代容完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671144
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778242
捐赠科研通 2938305
什么是DOI,文献DOI怎么找? 1609831
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962