能量守恒
耗散系统
能量(信号处理)
跟踪(教育)
数学教育
工作(物理)
课程(导航)
物理
班级(哲学)
样品(材料)
可持续能源
磁道(磁盘驱动器)
节能
工程伦理学
理论物理学
数据科学
计算机科学
社会学
心理学
人工智能
教育学
工程类
量子力学
天文
可再生能源
电气工程
热力学
操作系统
摘要
The ability to track flows of energy in complex and dissipative contexts is essential to understand many aspects of sustainable energy and climate change. Traditional physics instruction largely fails to develop that ability. This work argues that one plausible contributor to this deficiency could be an overemphasis on cases that lend themselves to quantitative calculation. Drawing on examples and data from a small sample of college physics students in a class on sustainable energy, it proposes that practice in semiquantitative energy tracking, using suitable visual and/or manipulable representations, can help develop students' skills in using energy reasoning in real-world, dissipative contexts.
科研通智能强力驱动
Strongly Powered by AbleSci AI