Digital twin-enabled prefabrication supply chain for smart construction and carbon emissions evaluation in building projects

预制 供应链 温室气体 工程类 射频识别 系统工程 故障检测与隔离 建筑信息建模 建筑工程 建筑工程 计算机科学 土木工程 运营管理 业务 计算机安全 电气工程 生态学 执行机构 营销 调度(生产过程) 生物
作者
Sitsofe Kwame Yevu,Emmanuel Kingsford Owusu,Albert P.C. Chan,Samad M. E. Sepasgozar,Vineet R. Kamat
出处
期刊:Journal of building engineering [Elsevier]
卷期号:78: 107598-107598 被引量:23
标识
DOI:10.1016/j.jobe.2023.107598
摘要

Digital twin (DT) provides effective pathways to solve issues in the construction industry, particularly smart construction and carbon emissions in prefabrication. Past DT research explored facility management and fault detection, highlighting a knowledge gap on the use of DT for smart construction and emissions monitoring in prefabrication supply chain (PSC). Therefore, the aim of this study is to present a holistic view of DT applications in PSC by exploring real-time smart construction and carbon emissions monitoring. A mixed-method review was adopted in two-steps involving scientometric and qualitative analysis in this study. Findings from the scientometric analysis revealed high interest in research themes such as emissions and energy control, artificial intelligence-based decision-making and blockchain integration in DT for prefabrication. Furthermore, the findings from the qualitative analysis demonstrated how smart technologies such as radio frequency identification (RFID), global positioning systems (GPS), laser scanners and sensors have been employed at the production, transportation, and on-site assembly stages of PSC for buildings. For real-time carbon emissions monitoring in DT, this study revealed various smart technologies and their corresponding information requirements for materials/components, machinery, and processes at each stage of the PSC. Five future research directions were provided on effective ways to advance DT in PSC for intelligent building processes and monitor emissions. Therefore, this study not only shows smart technologies suitable for DT in PSC, but also contributes to knowledge on using DT to monitor real-time carbon emissions in PSC for buildings. This study would aid researchers and practitioners with systemic approaches to employ when applying DT in PSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助LDDD采纳,获得10
2秒前
2秒前
打打应助臧真采纳,获得10
2秒前
小吕完成签到,获得积分10
3秒前
林夕夕发布了新的文献求助30
3秒前
开朗熊猫发布了新的文献求助10
3秒前
默默书竹发布了新的文献求助10
4秒前
巴拉巴拉发布了新的文献求助10
4秒前
jessicazhong完成签到,获得积分10
5秒前
dy完成签到,获得积分10
6秒前
天天快乐应助樱桃小胖子采纳,获得10
6秒前
w王w发布了新的文献求助10
7秒前
赘婿应助端庄的如花采纳,获得10
7秒前
8秒前
Yuxuan发布了新的文献求助10
9秒前
默默书竹完成签到,获得积分10
10秒前
qwer完成签到,获得积分10
10秒前
拾壹完成签到,获得积分10
10秒前
10秒前
Akim应助现实的从蓉采纳,获得10
11秒前
充电宝应助centlay采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
爆米花应助这不河狸采纳,获得10
15秒前
嘎嘎嘎发布了新的文献求助10
15秒前
闪闪的乐蕊完成签到,获得积分10
15秒前
哈哈完成签到 ,获得积分20
16秒前
17秒前
17秒前
19秒前
宁少爷应助centlay采纳,获得50
19秒前
20秒前
云铱梦令发布了新的文献求助10
20秒前
思源应助可可杨采纳,获得10
20秒前
20秒前
21秒前
candy7c发布了新的文献求助10
21秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129103
求助须知:如何正确求助?哪些是违规求助? 2779953
关于积分的说明 7745314
捐赠科研通 2435069
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623472
版权声明 600542