Dual-energy CT-based radiomics for predicting invasiveness of lung adenocarcinoma appearing as ground-glass nodules

医学 无线电技术 放射科 核医学 接收机工作特性 Lasso(编程语言) 组内相关 逻辑回归 腺癌 射线照相术 癌症 内科学 计算机科学 临床心理学 万维网 心理测量学
作者
Yuting Zheng,Xiaoyu Han,Xi Jia,Chengyu Ding,Kailu Zhang,Hanting Li,Cao Xue-Xiang,Xiao‐Hui Zhang,Xin Zhang,Heshui Shi
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:5
标识
DOI:10.3389/fonc.2023.1208758
摘要

Objectives To explore the value of radiomics based on Dual-energy CT (DECT) for discriminating preinvasive or MIA from IA appearing as GGNs before surgery. Methods The retrospective study included 92 patients with lung adenocarcinoma comprising 30 IA and 62 preinvasive-MIA, which were further divided into a training (n=64) and a test set (n=28). Clinical and radiographic features along with quantitative parameters were recorded. Radiomics features were derived from virtual monoenergetic images (VMI), including 50kev and 150kev images. Intraclass correlation coefficients (ICCs), Pearson’s correlation analysis and least absolute shrinkage and selection operator (LASSO) penalized logistic regression were conducted to eliminate unstable and redundant features. The performance of the models was evaluated by area under the curve (AUC) and the clinical utility was assessed using decision curve analysis (DCA). Results The DECT-based radiomics model performed well with an AUC of 0.957 and 0.865 in the training and test set. The clinical-DECT model, comprising sex, age, tumor size, density, smoking, alcohol, effective atomic number, and normalized iodine concentration, had an AUC of 0.929 in the training and 0.719 in the test set. In addition, the radiomics model revealed a higher AUC value and a greater net benefit to patients than the clinical-DECT model. Conclusion DECT-based radiomics features were valuable in predicting the invasiveness of GGNs, yielding a better predictive performance than the clinical-DECT model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到 ,获得积分10
2秒前
3秒前
世上僅有的榮光之路完成签到,获得积分10
5秒前
梦_筱彩完成签到 ,获得积分10
8秒前
kk发布了新的文献求助10
9秒前
jlwang发布了新的文献求助10
11秒前
ding应助研友_8Y05PZ采纳,获得10
12秒前
redamancy完成签到 ,获得积分10
24秒前
寒冷的断缘完成签到,获得积分10
24秒前
vagabond完成签到 ,获得积分10
25秒前
调皮的老王头完成签到,获得积分10
25秒前
ye2022完成签到,获得积分10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
bkagyin应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
yangching应助科研通管家采纳,获得10
28秒前
LEE123完成签到,获得积分10
29秒前
f00f发布了新的文献求助10
30秒前
xxxksk完成签到 ,获得积分0
32秒前
liberation完成签到 ,获得积分10
35秒前
JingP发布了新的文献求助10
36秒前
Anoodleatlarge完成签到 ,获得积分10
36秒前
无花果应助kk采纳,获得10
36秒前
午夜时分收病人完成签到,获得积分10
37秒前
诸葛丞相完成签到 ,获得积分10
39秒前
璇璇完成签到 ,获得积分10
40秒前
虚幻无颜完成签到 ,获得积分10
41秒前
f00f完成签到,获得积分10
45秒前
华北走地鸡完成签到,获得积分10
48秒前
踏雪飞鸿完成签到,获得积分10
50秒前
gg完成签到,获得积分10
52秒前
qiandi完成签到,获得积分10
56秒前
cocofan完成签到 ,获得积分10
57秒前
Yang22完成签到,获得积分10
58秒前
长安乱世完成签到 ,获得积分10
59秒前
tangzl完成签到 ,获得积分10
1分钟前
Cbbaby发布了新的文献求助10
1分钟前
无花果应助Melody采纳,获得10
1分钟前
TOMORI酱完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056657
求助须知:如何正确求助?哪些是违规求助? 2713111
关于积分的说明 7434777
捐赠科研通 2358205
什么是DOI,文献DOI怎么找? 1249340
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596250