Multi-Scale Density-Aware Network for Single Image Dehazing

计算机科学 比例(比率) 特征(语言学) 前馈 传输(电信) 人工智能 图像(数学) 领域(数学) 钥匙(锁) 计算机视觉 模式识别(心理学) 数学 电信 语言学 量子力学 计算机安全 物理 工程类 控制工程 哲学 纯数学
作者
Ting Chen,Lina Yao,Peng Cheng,Ting Chen,Lidong Liu
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:30: 1117-1121
标识
DOI:10.1109/lsp.2023.3304540
摘要

Dehazing based on deep learning has attracted a lot of attention recently. Most dehazing networks seldom consider two critical features of real outdoor-scene haze, i.e. , depth and haze density, resulting in degraded performance on real hazy images compared with synthetic hazy images. Moreover, the uncertainty problem is crucial in the image restoration field, but it is often ignored. In this letter, we propose a novel multi-scale density-aware network (MSDAN) for single image dehazing, where a key dual feedback module (DFB) is proposed and embedded in the decoder part of MSDAN. Furthermore, the DFB includes a feedforward mechanism and two feedback mechanisms: feature feedback (FF) and transmission feedback (TF). Specifically, the feedforward mechanism predicts a low-scale transmission map ( $t$ -map), while FF and TF aim to enhance confident features to reduce model uncertainty in the training process and correct features by introducing depth and density information. In addition, two novel modules: confident feature attention module (CFA) and transmission adjustment module (TADJ) are proposed as cores for confident features estimation of FF and TF, respectively. Extensive quantitative and qualitative experiments are conducted on several public datasets, which demonstrate that the proposed algorithm outperforms the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助淡然扬采纳,获得10
1秒前
helpme完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
7秒前
9秒前
深山何处钟声鸣完成签到 ,获得积分10
11秒前
12秒前
Somnus完成签到 ,获得积分10
13秒前
穆一手完成签到 ,获得积分10
13秒前
聪明宛完成签到 ,获得积分10
13秒前
Clover04应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
stuffmatter应助科研通管家采纳,获得10
14秒前
stuffmatter应助科研通管家采纳,获得10
14秒前
stuffmatter应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得20
14秒前
隐形曼青应助科研通管家采纳,获得20
14秒前
stuffmatter应助科研通管家采纳,获得10
14秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
LHL完成签到,获得积分10
15秒前
15秒前
脑洞疼应助白苏采纳,获得10
15秒前
xiao123789发布了新的文献求助10
16秒前
香蕉觅云应助zyy_luck采纳,获得10
17秒前
淡然扬发布了新的文献求助10
18秒前
19秒前
中午吃什么完成签到,获得积分10
19秒前
犹豫的世倌完成签到,获得积分10
22秒前
共享精神应助beikeyy采纳,获得10
22秒前
小李发布了新的文献求助10
23秒前
23秒前
所所应助体贴的靖仇采纳,获得10
27秒前
大佬发布了新的文献求助10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790680
关于积分的说明 7796114
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176