Probing RNA–Small Molecule Interactions Using Biophysical and Computational Approaches

等温滴定量热法 计算生物学 核糖核酸 小分子 背景(考古学) 合理设计 化学 分子 生物物理学 生物 生物化学 遗传学 基因 古生物学 有机化学
作者
Amiu Shino,Maina Otsu,Koji Imai,Kaori Fukuzawa,Ella Czarina Morishita
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:18 (11): 2368-2376 被引量:3
标识
DOI:10.1021/acschembio.3c00287
摘要

Interest in small molecules that target RNA is flourishing, and the expectation set on them to treat diseases with unmet medical needs is high. However, several challenges remain, including difficulties in selecting suitable tools and establishing workflows for their discovery. In this context, we optimized experimental and computational approaches that were previously employed for the protein targets. Here, we demonstrate that a fluorescence-based assay can be effectively used to screen small molecule libraries for their ability to bind and stabilize an RNA stem-loop. Our screen identified several fluoroquinolones that bind to the target stem-loop. We further probed their interactions with the target using biolayer interferometry, isothermal titration calorimetry (ITC), and nuclear magnetic resonance spectroscopy. The results of these biophysical assays suggest that the fluoroquinolones bind the target in a similar manner. Armed with this knowledge, we built models for the complexes of the fluoroquinolones and the RNA target. Then, we performed fragment molecular orbital (FMO) calculations to dissect the interactions between the fluoroquinolones and the RNA. We found that the binding free energies obtained from the ITC experiments correlated strongly with the interaction energies calculated by FMO. Finally, we designed fluoroquinolone analogues and performed FMO calculations to predict their binding free energies. Taken together, the results of this study support the importance of conducting orthogonal assays in binding confirmation and compound selection and demonstrate the usefulness of FMO calculations in the rational design of RNA-targeted small molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迟大猫应助乐乱采纳,获得10
1秒前
万能图书馆应助派大星采纳,获得10
2秒前
FashionBoy应助娜行采纳,获得10
3秒前
3秒前
传奇3应助后知后觉采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助Chem is try采纳,获得10
4秒前
5秒前
a方舟发布了新的文献求助10
5秒前
寒冷书竹发布了新的文献求助10
5秒前
5秒前
hhh发布了新的文献求助10
5秒前
顾矜应助富婆嘉嘉子采纳,获得10
5秒前
5秒前
5秒前
6秒前
江风海韵完成签到,获得积分10
6秒前
火星上的从雪完成签到,获得积分10
6秒前
在水一方应助kai采纳,获得10
6秒前
打打应助留胡子的青柏采纳,获得10
7秒前
7秒前
zhanghw发布了新的文献求助10
7秒前
Frank完成签到,获得积分10
7秒前
桐桐应助小喵采纳,获得10
7秒前
香蕉觅云应助执笔客采纳,获得10
7秒前
light完成签到 ,获得积分10
7秒前
你仔细听完成签到,获得积分10
8秒前
8秒前
Sailzyf完成签到,获得积分10
8秒前
抓恐龙发布了新的文献求助10
8秒前
8秒前
汉堡包应助言小采纳,获得10
9秒前
Chen发布了新的文献求助10
9秒前
lql233完成签到,获得积分20
9秒前
雪白问兰完成签到 ,获得积分10
9秒前
9秒前
魅力蜗牛完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672