Advancing accuracy in guided implant placement: A comprehensive meta-analysis

荟萃分析 植入 模式 医学 计算机科学 医学物理学 外科 内科学 社会科学 社会学
作者
Anna Takács,Eszter Hardi,Bianca Golzio Navarro Cavalcante,Bence Szabó,Barbara Kispélyi,Árpád Joób-Fancsaly,Krisztina Mikulás,Gábor Varga,Péter Hegyi,Márton Kivovics
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:139: 104748-104748 被引量:9
标识
DOI:10.1016/j.jdent.2023.104748
摘要

This meta-analysis aimed to determine the accuracy of currently available computer-assisted implant surgery (CAIS) modalities under in vitro conditions and investigate whether these novel techniques can achieve clinically acceptable accuracy. In vitro studies comparing the postoperative implant position with the preoperative plan were included. Risk of bias was assessed using the Quality Assessment Tool For In Vitro Studies (QUIN Tool) and a sensitivity analysis was conducted using funnel plots. A systematic search was performed on April 18, 2023, using the following three databases: MEDLINE (via PubMed), EMBASE, and Cochrane Central Register of Controlled Trials. No filters or restrictions were applied during the search. A total of 5,894 studies were included following study selection. Robotic- and static CAIS (sCAIS) had the most accurate and clinically acceptable outcomes. sCAIS was further divided according to the guidance level. Among the sCAIS groups, fully guided implant placement had the greatest accuracy. Augmented reality-based CAIS (AR-based CAIS) had clinically acceptable results for all the outcomes except for apical global deviation. Dynamic CAIS (dCAIS) demonstrated clinically safe results, except for horizontal apical deviation. Freehand implant placement was associated with the greatest number of errors. Fully guided sCAIS demonstrated the most predictable outcomes, whereas freehand sCAIS demonstrated the lowest accuracy. AR-based and robotic CAIS may be promising alternatives. To our knowledge, this is the first meta-analysis to evaluate the accuracy of robotic CAIS and investigate the accuracy of various CAIS modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助DrYang采纳,获得10
刚刚
1秒前
2秒前
crazynail完成签到,获得积分10
3秒前
神勇寄松完成签到,获得积分10
5秒前
monica01010发布了新的文献求助10
5秒前
目土土发布了新的文献求助10
7秒前
英姑应助xiezhuochun采纳,获得10
8秒前
ypy完成签到,获得积分20
10秒前
大蜜桃完成签到,获得积分20
10秒前
聪123发布了新的文献求助20
11秒前
13秒前
王某人完成签到,获得积分10
14秒前
英姑应助ExtroGod采纳,获得10
14秒前
15秒前
香菜完成签到,获得积分10
15秒前
xiezhuochun完成签到,获得积分10
16秒前
狂野紫伊发布了新的文献求助30
17秒前
loyalll发布了新的文献求助10
18秒前
想抱完成签到,获得积分10
21秒前
Orange应助目土土采纳,获得10
21秒前
21秒前
彭于晏应助哈啰采纳,获得10
22秒前
TP完成签到 ,获得积分10
23秒前
24秒前
SciGPT应助负责流口水采纳,获得10
25秒前
26秒前
JamesPei应助聪123采纳,获得10
26秒前
sunny发布了新的文献求助10
26秒前
hujialiang完成签到,获得积分10
27秒前
ab发布了新的文献求助10
29秒前
30秒前
31秒前
elena发布了新的文献求助10
32秒前
天河水完成签到 ,获得积分20
32秒前
端庄的正豪完成签到 ,获得积分10
32秒前
ExtroGod发布了新的文献求助10
33秒前
34秒前
神勇寄松发布了新的文献求助10
35秒前
清雨桩完成签到,获得积分10
35秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351054
求助须知:如何正确求助?哪些是违规求助? 2976578
关于积分的说明 8675743
捐赠科研通 2657703
什么是DOI,文献DOI怎么找? 1455217
科研通“疑难数据库(出版商)”最低求助积分说明 673767
邀请新用户注册赠送积分活动 664256