牛磺酸
内分泌学
盐度
渗透调节
内科学
音调
生物
渗透压
化学
生物化学
动物科学
氨基酸
医学
生态学
作者
Yihua Chen,Min Deng,Zhiguo Dong,Yifeng Li,Donghong Niu
标识
DOI:10.1016/j.cbpa.2023.111536
摘要
Salinity changes affect the osmotic gradient across the gill epithelium of marine species. Taurine is an important osmoregulator with a crucial role in osmoregulation in marine bivalves. This study determined the osmolality, taurine content, key enzymes involved in taurine synthesis (cysteine dioxygenase (CDO), cysteine sulfinic acid decarboxylase (CSAD), and taurine transporter (TauT)) and related gene expression in razor clam Sinonovacula constricta in response to high salt stress [high salt seawater (S30) versus high salt seawater with taurine supplementation (S30T) versus natural salinity control]. The data were recorded at 0, 6, 12, 24, 48, 72 h. Serum osmolality significantly increased under high salt conditions compared with the control group (P < 0.05). When serum osmolality had stabilized (after 48 h), there was no significant difference in serum osmolality between the S30T and control groups (P > 0.05), but serum osmolality was significantly lower in the S30 versus control group (P < 0.05). Taurine content significantly increased under high salt stress and remained high (P < 0.05). CSAD and CDO content was higher in S30 than in S30T, whereas TauT was significantly lower in S30 than in the control group eventually (P < 0.05). Expression of CDO and CSAD in the S30 and S30T groups was significantly higher than in control animals (P < 0.05), with that in S30 being higher than in S30T. By contrast, TauT expression peaked 6 h after stress in S30 and S30T, but was lower in S30 than in the control group (P < 0.05). These results demonstrate that S. constricta is an osmoconformer, with exogenous taurine relieving the stress of osmoregulation caused by insufficient endogenous taurine in cells. These findings further enhance our understanding of the regulatory mechanisms underlying the response of S. constricta to high salinity stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI