Association between insulin resistance related indicators with the prognosis of patients with colorectal cancer

医学 危险系数 内科学 结直肠癌 置信区间 比例危险模型 胰岛素抵抗 肿瘤科 一致性 癌症 胰岛素
作者
Ming Yang,Qi Zhang,Yi‐Zhong Ge,Meng Tang,Xi Zhang,Mengmeng Song,Guo‐Tian Ruan,Xiaowei Zhang,Kang‐Ping Zhang,Hanping Shi
出处
期刊:Cancer Epidemiology [Elsevier]
卷期号:87: 102478-102478 被引量:3
标识
DOI:10.1016/j.canep.2023.102478
摘要

The progression of colorectal cancer (CRC) has been linked to metabolism alteration. Because insulin resistance (IR) is the basic mechanism of metabolism alteration, IR related indicators are considered to be associated with prognostic of CRC. In this study, we compared the prognostic values of common IR related indicators for CRC and selected the best one. Moreover, we explored the association between that indicator and CRC prognosis and possible interactive covariates. Medical records of patients with CRC (n = 1765) were retrieved from the Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) study. We compared the prognostic values of IR related indicators and select the best one using concordance index (C-index) and area under curve (AUC). Using Cox proportional hazard regression models, we evaluated the association between that indicator and CRC prognosis. Interaction tests were performed to evaluate possible interactions among covariates and the IR related indicator. Results of C-index and AUC indicated that the ratio of low-density lipoprotein-to-high-density lipoprotein (LHR) showed the highest ability to predict the prognosis of patients with CRC. LHR independently predicted CRC prognosis [hazard ratio (HR) = 1.14; 95 % confidence interval (CI) = 1.05–1.22; P = 0.001]. The interactions between LHR, and age (<65 vs. ≥65; P for interaction = 0.001) or neutrocyte-to-lymphocyte ratio (NLR) (<3 vs. ≥3; P for interaction = 0.055) were also observed. LHR was found to be the best IR related indicators to predict prognosis of CRC, and it was negatively correlated with the prognosis of patients with CRC. NLR and aging might interact with LHR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
哈哈哈应助曹宇哲采纳,获得10
1秒前
1秒前
2秒前
等风的人完成签到,获得积分10
2秒前
jiajia完成签到,获得积分10
2秒前
3秒前
各方面完成签到,获得积分10
3秒前
qijie完成签到,获得积分10
3秒前
七仙女完成签到,获得积分10
4秒前
4秒前
茶米发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
开放香岚完成签到,获得积分10
5秒前
跳跃飞瑶完成签到,获得积分20
6秒前
Jialing发布了新的文献求助30
6秒前
小马甲应助诗谙采纳,获得10
6秒前
6秒前
7秒前
17完成签到,获得积分10
7秒前
双硫仑完成签到,获得积分10
8秒前
8秒前
ccc完成签到,获得积分10
8秒前
niNe3YUE应助Frrrrreda采纳,获得10
8秒前
香蕉觅云应助uinui采纳,获得10
8秒前
9秒前
王多肉发布了新的文献求助10
10秒前
澄钰羽完成签到,获得积分10
10秒前
land发布了新的文献求助10
10秒前
蛰伏完成签到,获得积分20
11秒前
范海辛完成签到,获得积分10
11秒前
开心完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
科研通AI6.1应助胡俊豪采纳,获得10
12秒前
可爱问旋完成签到,获得积分10
13秒前
13秒前
XXGG完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677