Association between insulin resistance related indicators with the prognosis of patients with colorectal cancer

医学 危险系数 内科学 结直肠癌 置信区间 比例危险模型 胰岛素抵抗 肿瘤科 一致性 癌症 胰岛素
作者
Ming Yang,Qi Zhang,Yi‐Zhong Ge,Meng Tang,Xi Zhang,Mengmeng Song,Guo‐Tian Ruan,Xiaowei Zhang,Kang‐Ping Zhang,Hanping Shi
出处
期刊:Cancer Epidemiology [Elsevier]
卷期号:87: 102478-102478 被引量:3
标识
DOI:10.1016/j.canep.2023.102478
摘要

The progression of colorectal cancer (CRC) has been linked to metabolism alteration. Because insulin resistance (IR) is the basic mechanism of metabolism alteration, IR related indicators are considered to be associated with prognostic of CRC. In this study, we compared the prognostic values of common IR related indicators for CRC and selected the best one. Moreover, we explored the association between that indicator and CRC prognosis and possible interactive covariates. Medical records of patients with CRC (n = 1765) were retrieved from the Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) study. We compared the prognostic values of IR related indicators and select the best one using concordance index (C-index) and area under curve (AUC). Using Cox proportional hazard regression models, we evaluated the association between that indicator and CRC prognosis. Interaction tests were performed to evaluate possible interactions among covariates and the IR related indicator. Results of C-index and AUC indicated that the ratio of low-density lipoprotein-to-high-density lipoprotein (LHR) showed the highest ability to predict the prognosis of patients with CRC. LHR independently predicted CRC prognosis [hazard ratio (HR) = 1.14; 95 % confidence interval (CI) = 1.05–1.22; P = 0.001]. The interactions between LHR, and age (<65 vs. ≥65; P for interaction = 0.001) or neutrocyte-to-lymphocyte ratio (NLR) (<3 vs. ≥3; P for interaction = 0.055) were also observed. LHR was found to be the best IR related indicators to predict prognosis of CRC, and it was negatively correlated with the prognosis of patients with CRC. NLR and aging might interact with LHR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助NikolausC采纳,获得10
1秒前
欧阳慕山完成签到,获得积分10
1秒前
顺心冰巧完成签到,获得积分10
1秒前
温酒筚篥发布了新的文献求助10
2秒前
土豆丝炒姜丝完成签到,获得积分10
2秒前
缓慢的冰巧完成签到 ,获得积分10
2秒前
Rylee发布了新的文献求助10
2秒前
小桃子完成签到 ,获得积分10
2秒前
2秒前
雷锋完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
SciGPT应助坚定涵柏采纳,获得10
2秒前
3秒前
3秒前
lqz07发布了新的文献求助10
3秒前
小杨小杨发布了新的文献求助10
3秒前
yinhuan完成签到 ,获得积分10
3秒前
小蘑菇应助xingzhenwujiang采纳,获得10
3秒前
3秒前
wanci应助调皮乐荷采纳,获得10
3秒前
萌新完成签到,获得积分10
3秒前
郭郭完成签到 ,获得积分10
4秒前
5秒前
想要用不完的积分完成签到,获得积分10
5秒前
ayu完成签到,获得积分10
5秒前
大大完成签到,获得积分10
5秒前
qtr完成签到 ,获得积分20
6秒前
6秒前
6秒前
FashionBoy应助上杉绘梨衣采纳,获得10
6秒前
姜小姜发布了新的文献求助10
7秒前
zht完成签到,获得积分10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得30
7秒前
guoweismmu发布了新的文献求助10
7秒前
7秒前
7秒前
小圆完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632