S2MetNet: A novel dataset and deep learning benchmark for methane point source quantification using Sentinel-2 satellite imagery

遥感 计算机科学 深度学习 环境科学 甲烷 水准点(测量) 多光谱图像 卫星 卫星图像 气象学 人工智能 地质学 生态学 物理 大地测量学 航空航天工程 工程类 生物
作者
Ali Radman,Masoud Mahdianpari,Daniel J. Varon,Fariba Mohammadimanesh
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113708-113708 被引量:8
标识
DOI:10.1016/j.rse.2023.113708
摘要

Methane, as a crucial greenhouse gas, plays a significant role in global warming, contributing to approximately one-quarter of the observed climate change since pre-industrial times. Consequently, the detection and quantification of major methane emitters are vital in addressing this issue effectively. Satellite sensors with shortwave infrared (SWIR) spectral bands provide valuable information for monitoring methane emissions. For example, Sentinel-2 multispectral data have the capability to detect methane plumes of large point sources. As such, a wide range of quantification approaches have been developed to quantify methane source rates based on this dataset. Most of the existing methods, however, require auxiliary data, such as wind speed, and have large uncertainties. In this study, we introduce a novel approach based on deep learning models to enhance the precision of methane quantification using Sentinel-2 data without the reliance on external data sources. To train the proposed deep learning model, a comprehensive benchmark dataset has been generated, using Sentinel-2 data. This dataset is created by integrating simulated plumes and background noise extracted from real Sentinel-2 images. This approach ensures the integration of realistic environmental conditions within the simulated data, enhancing the robustness and reliability of our proposed model. The generated benchmark dataset is utilized in different deep learning architectures, namely VGG-19, ResNet-50, Inception-v3, DenseNet-121, Swin-T, and EfficientNet-V2L, to estimate methane source rate. The performance of deep models has been evaluated in three learning strategies, namely from scratch, transfer-learning, and fine-tuning. The fine-tuned EfficientNet-V2L achieves the highest accuracy with root-mean-square error (RMSE), mean absolute percentage error (MAPE), and Pearson R of 2101 kg h−1, 10.05%, and 95.70%, respectively. More importantly, the proposed model demonstrates superior performance compared to conventional physical-based quantification methods (e.g., integrated mass enhancement) and recently developed deep learning model techniques (e.g., MethaNet). In particular, the proposed model exhibits an improvement of approximately 1287 kg h−1 in terms of RMSE, a 3.92% reduction in MAPE, and a 5.01% enhancement in R compared to the IME method. These results highlight the advancements achieved by the proposed approach in accurately quantifying methane emissions using Sentinel-2 imagery. The generated benchmark dataset and the developed deep learning model presented in this study serve as a fundamental resource and constructive framework for future research, promoting extensive implementation across various methane monitoring scenarios on different satellites and in distinct geographic regions, which delivering greater effectiveness to global methane emission monitoring initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助毕威采纳,获得10
1秒前
振耳欲聋的沉默完成签到,获得积分10
2秒前
PANYIAO发布了新的文献求助10
4秒前
Betty完成签到,获得积分10
5秒前
小陆完成签到,获得积分10
8秒前
艾斯卡尔完成签到,获得积分20
8秒前
魔域发布了新的文献求助10
10秒前
大方的高丽关注了科研通微信公众号
11秒前
sheh发布了新的文献求助10
12秒前
搜集达人应助逃亡的小狗采纳,获得10
13秒前
14秒前
15秒前
Frankie完成签到,获得积分10
17秒前
kiuikiu完成签到,获得积分10
17秒前
沉淀发布了新的文献求助10
19秒前
上官若男应助13123采纳,获得10
19秒前
万能图书馆应助sheh采纳,获得10
21秒前
情怀应助魔域采纳,获得10
21秒前
hzhang0807发布了新的文献求助10
23秒前
wanci应助难过的飞雪采纳,获得10
23秒前
FashionBoy应助沉淀采纳,获得10
25秒前
26秒前
科目三应助康泽采纳,获得10
28秒前
木子完成签到,获得积分10
28秒前
葉鳳怡完成签到 ,获得积分10
29秒前
陈思思发布了新的文献求助10
30秒前
hzhang0807完成签到,获得积分10
31秒前
32秒前
33秒前
34秒前
34秒前
36秒前
123发布了新的文献求助10
36秒前
36秒前
37秒前
大方的高丽完成签到,获得积分10
37秒前
xiaosi完成签到,获得积分10
38秒前
陈小青发布了新的文献求助10
38秒前
39秒前
研友_ndPr4n发布了新的文献求助10
39秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717762
求助须知:如何正确求助?哪些是违规求助? 3264551
关于积分的说明 9934780
捐赠科研通 2978341
什么是DOI,文献DOI怎么找? 1633385
邀请新用户注册赠送积分活动 775127
科研通“疑难数据库(出版商)”最低求助积分说明 745384