A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters

计算机科学 能源管理系统 能源管理 需求响应 数学优化 强化学习 光伏系统 发电 智能电网 运筹学 能量(信号处理) 工程类 功率(物理) 人工智能 数学 统计 物理 量子力学 电气工程
作者
Kezheng Ren,Jun Liu,Zeyang Wu,Xinglei Liu,Yongxin Nie,Haitao Xu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:355: 122258-122258 被引量:43
标识
DOI:10.1016/j.apenergy.2023.122258
摘要

With the rise in household computing power and the increasing number of smart devices, more and more residents are able to participate in demand response (DR) management through the home energy management system (HEMS). However, HEMS has encountered challenges in developing the most effective energy management strategies, including the complexity of modeling user comfort, uncertainty in electricity price and photovoltaic (PV) output, and the challenge of solving high-dimensional time-coupled decision problems. To address these challenges, a novel data-driven deep reinforcement learning (DRL)-base HEMS optimization framework considering uncertain household parameters is proposed. Firstly, a thermal comfort evaluation model based on integrated learning is proposed. Then, a prediction model based on the bidirectional gated recurrent unit neural network (BiGRU-NN) algorithm is proposed to mine the time series PV output and electricity price data. Finally, combining the PV output and electricity price forecasting, along with the thermal comfort evaluation, an optimal decision-making method based on soft actor-critic (SAC) algorithm for the HEMS is established. The results of numerical experiments show that the proposed method can effectively solve the high-dimensional integrated decision-making problem with uncertainty. By participating in DR, the household electricity cost can be reduced by 17.7% and the total cost can be reduced by 8.4%. Furthermore, the comparison result shows that the method proposed in this paper performs better than the existing optimization models based on proximal policy optimization (PPO) algorithm and twin-delayed depth deterministic policy gradient (TD3) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助FXQ123_范采纳,获得10
1秒前
CipherSage应助青野采纳,获得10
2秒前
无语的沛春完成签到,获得积分10
2秒前
wxp19发布了新的文献求助20
2秒前
tianya完成签到,获得积分10
3秒前
完美世界应助sunshine采纳,获得10
3秒前
科研通AI2S应助马er采纳,获得10
4秒前
skbkbe完成签到,获得积分10
4秒前
4秒前
CAOHOU应助酷酷银耳汤采纳,获得10
4秒前
5秒前
8秒前
高贵梦露发布了新的文献求助10
10秒前
12秒前
13秒前
GL发布了新的文献求助10
13秒前
乐乐应助如意枫叶采纳,获得10
13秒前
14秒前
史念薇发布了新的文献求助10
14秒前
xixi完成签到 ,获得积分10
14秒前
16秒前
青野发布了新的文献求助10
18秒前
21秒前
22秒前
高贵梦露完成签到,获得积分10
22秒前
24秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
如意枫叶发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
31秒前
32秒前
33秒前
赘婿应助GL采纳,获得10
33秒前
34秒前
34秒前
Archer宇完成签到,获得积分10
34秒前
狸花小喵发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136