亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters

计算机科学 能源管理系统 能源管理 需求响应 数学优化 强化学习 光伏系统 发电 智能电网 运筹学 能量(信号处理) 工程类 功率(物理) 人工智能 数学 量子力学 统计 电气工程 物理
作者
Kezheng Ren,Jun Liu,Zeyang Wu,Xinglei Liu,Yongxin Nie,Haitao Xu
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122258-122258 被引量:62
标识
DOI:10.1016/j.apenergy.2023.122258
摘要

With the rise in household computing power and the increasing number of smart devices, more and more residents are able to participate in demand response (DR) management through the home energy management system (HEMS). However, HEMS has encountered challenges in developing the most effective energy management strategies, including the complexity of modeling user comfort, uncertainty in electricity price and photovoltaic (PV) output, and the challenge of solving high-dimensional time-coupled decision problems. To address these challenges, a novel data-driven deep reinforcement learning (DRL)-base HEMS optimization framework considering uncertain household parameters is proposed. Firstly, a thermal comfort evaluation model based on integrated learning is proposed. Then, a prediction model based on the bidirectional gated recurrent unit neural network (BiGRU-NN) algorithm is proposed to mine the time series PV output and electricity price data. Finally, combining the PV output and electricity price forecasting, along with the thermal comfort evaluation, an optimal decision-making method based on soft actor-critic (SAC) algorithm for the HEMS is established. The results of numerical experiments show that the proposed method can effectively solve the high-dimensional integrated decision-making problem with uncertainty. By participating in DR, the household electricity cost can be reduced by 17.7% and the total cost can be reduced by 8.4%. Furthermore, the comparison result shows that the method proposed in this paper performs better than the existing optimization models based on proximal policy optimization (PPO) algorithm and twin-delayed depth deterministic policy gradient (TD3) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Willow完成签到,获得积分10
2秒前
Hello应助能不能不看论文采纳,获得10
6秒前
Binbin完成签到,获得积分10
10秒前
14秒前
47秒前
51秒前
zznzn发布了新的文献求助10
52秒前
小蘑菇应助kzf丶bryant采纳,获得10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
计划完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
himes发布了新的文献求助10
1分钟前
JamesPei应助甜青提采纳,获得10
1分钟前
Owen应助LukeLion采纳,获得10
1分钟前
himes完成签到,获得积分10
1分钟前
1分钟前
李健应助麦麦采纳,获得10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
甜青提发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
麦麦发布了新的文献求助10
1分钟前
1分钟前
沫雨应助zznzn采纳,获得10
2分钟前
一只鲨呱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
在水一方应助wang采纳,获得10
2分钟前
轻松听双发布了新的文献求助10
2分钟前
2分钟前
从容芮完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助100
3分钟前
3分钟前
3分钟前
AZN完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911770
关于积分的说明 15134204
捐赠科研通 4829956
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540222
关于科研通互助平台的介绍 1498407