亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A time series continuous missing values imputation method based on generative adversarial networks

鉴别器 插补(统计学) 缺少数据 计算机科学 发电机(电路理论) 生成对抗网络 人工神经网络 插值(计算机图形学) 生成语法 时间序列 人工智能 算法 数据挖掘 机器学习 模式识别(心理学) 深度学习 运动(物理) 电信 功率(物理) 物理 量子力学 探测器
作者
Yunsheng Wang,Xinghan Xu,Lei Hu,Jianchao Fan,Min Han
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:283: 111215-111215 被引量:20
标识
DOI:10.1016/j.knosys.2023.111215
摘要

Generative adversarial networks (GANs) have been widely utilized in time series analysis and modeling, wherein generators and discriminators interact to generate realistic data. However, when addressing the challenge of imputing continuous missing values in time series, the generator struggles to learn meaningful features due to the loss of local information, and the discriminator's loss function exhibits significant deviations in determining the probability, making it difficult to effectively update model parameters during training. In response to these issues, this study presents a novel imputation model called cue Wasserstein generative adversarial network with gradient penalty (CWGAIN-GP). CWGAIN-GP incorporates the contextual cue information matrixs into the generator, enabling obtain and capture the potential data evolution features that hidden beyond the missing positions. This approach constrains the generator's generation results to be closer to the true values probability distribution. Meanwhile, it optimizes the generator and discriminator neural network structure and loss function computation strategy of the original GAN model, which not only improves the accuracy of continuous missing data interpolation, but also improves the training stability of the model. Finally, We used three imputation accuracies on two real-world datasets, including experiments on imputation accuracy for eight comparison models, ablation study, and experiments on the effect of consecutive missing lengths. The experimental results show that CWGAIN-GP achieves impressive performance in imputing continuous missing time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心想柿橙完成签到,获得积分10
16秒前
嘻嘻完成签到,获得积分10
22秒前
MchemG完成签到,获得积分0
37秒前
41秒前
52秒前
1分钟前
lorentzh完成签到,获得积分10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
烟花应助勤恳依霜采纳,获得10
1分钟前
yu完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
上官听白完成签到,获得积分10
2分钟前
Perry完成签到,获得积分10
2分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
淡淡的秋柳完成签到 ,获得积分10
4分钟前
li完成签到,获得积分10
4分钟前
Owen应助Michelle采纳,获得10
4分钟前
GPTea举报陈HIAHIA求助涉嫌违规
5分钟前
GPTea举报fanzi求助涉嫌违规
5分钟前
敏静完成签到,获得积分10
5分钟前
5分钟前
6分钟前
yxuan发布了新的文献求助10
6分钟前
上官若男应助yxuan采纳,获得10
6分钟前
6分钟前
fanssw完成签到 ,获得积分0
6分钟前
Michelle发布了新的文献求助10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
领导范儿应助ARESCI采纳,获得10
6分钟前
哈哈哈完成签到,获得积分10
7分钟前
xLi完成签到,获得积分10
7分钟前
聪慧青曼完成签到 ,获得积分10
7分钟前
Jasper应助hkx采纳,获得10
8分钟前
8分钟前
8分钟前
SciGPT应助文静的曼彤采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3996993
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712