已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Fault Detection Method Based on the Dynamic k-Nearest Neighbor Model and Dual Control Chart

符号 故障检测与隔离 算法 计算机科学 序列(生物学) 数学 人工智能 算术 生物 执行机构 遗传学
作者
Liang Liu,Jianchang Liu,Honghai Wang,Shubin Tan,Yuanchao Liu,Miao Yu,Peng Xu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3332452
摘要

The incipient fault detection of a complex industrial process is a challenging problem for traditional dynamic detection methods. Traditional dynamic detection methods usually decouple the correlations among the variables and dynamic correlations simultaneously, which makes the two types of correlations mixed and may lead to performance deterioration in long-sequence dynamic detection. Some incipient faults may not change the amplitudes of process variables but change the long-sequence dynamic features. Based on the $T^{2}$ statistic and matrix multiplication transformation ( $T^{2}$ S-MMT), traditional dynamic detection methods can detect many faults effectively. However, the $T^{2}$ S-MMT can not effectively detect some incipient faults due to the above two types of correlations mixed. In order to overcome the shortcomings of $T^{2}$ S-MMT and improve the detection ability of some incipient faults, this paper proposes a fault detection method based on the dynamic k-nearest neighbor model and Dual Control Chart (DKNN-DCC), which can improve the incipient fault detection performance by using long-sequence dynamic detection. The proposed method is verified by the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process. The experimental results show the effectiveness of the proposed method in incipient fault detection compared with traditional dynamic detection methods. Note to Practitioners —This paper presents a novel incipient fault detection method, which directly mines the long-sequence dynamic abnormal information from the process variable and overcomes the problem of some abnormal information being submerged in the $T^{2}$ statistic calculated based on the matrix multiplication transformation. The proposed method can detect incipient faults that are not easily detected by some traditional methods and can help operators find the abnormal and avoid more serious losses. The structure of the proposed method jumps out of the frameworks of traditional dynamic detection methods, which is feasible to apply to different stable industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助summer采纳,获得10
刚刚
麦兜完成签到 ,获得积分10
2秒前
啾啾发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
修水县1个科研人完成签到 ,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
xifan完成签到 ,获得积分10
7秒前
董果果完成签到,获得积分10
8秒前
刘璇1发布了新的文献求助10
11秒前
FashionBoy应助一笑置之采纳,获得10
12秒前
16秒前
岳小龙完成签到 ,获得积分10
17秒前
黯然完成签到 ,获得积分10
19秒前
22秒前
keyandog完成签到,获得积分10
22秒前
董果果发布了新的文献求助30
23秒前
huha发布了新的文献求助10
24秒前
大个应助万事胜意采纳,获得10
24秒前
受伤的鞅完成签到,获得积分10
27秒前
玖梦恨别离完成签到 ,获得积分10
28秒前
三兔三发布了新的文献求助10
30秒前
嗯哼应助库洛洛采纳,获得10
30秒前
红红酱发布了新的文献求助10
31秒前
未雨绸缪完成签到,获得积分10
31秒前
huha完成签到,获得积分10
34秒前
打工者完成签到,获得积分20
34秒前
三兔三完成签到,获得积分20
34秒前
35秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059460
求助须知:如何正确求助?哪些是违规求助? 2715402
关于积分的说明 7444888
捐赠科研通 2360925
什么是DOI,文献DOI怎么找? 1251043
科研通“疑难数据库(出版商)”最低求助积分说明 607671
版权声明 596448