A Fault Detection Method Based on the Dynamic k-Nearest Neighbor Model and Dual Control Chart

符号 故障检测与隔离 算法 计算机科学 序列(生物学) 数学 人工智能 算术 生物 执行机构 遗传学
作者
Liang Liu,Jianchang Liu,Honghai Wang,Shubin Tan,Yuanchao Liu,Miao Yu,Peng Xu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3332452
摘要

The incipient fault detection of a complex industrial process is a challenging problem for traditional dynamic detection methods. Traditional dynamic detection methods usually decouple the correlations among the variables and dynamic correlations simultaneously, which makes the two types of correlations mixed and may lead to performance deterioration in long-sequence dynamic detection. Some incipient faults may not change the amplitudes of process variables but change the long-sequence dynamic features. Based on the $T^{2}$ statistic and matrix multiplication transformation ( $T^{2}$ S-MMT), traditional dynamic detection methods can detect many faults effectively. However, the $T^{2}$ S-MMT can not effectively detect some incipient faults due to the above two types of correlations mixed. In order to overcome the shortcomings of $T^{2}$ S-MMT and improve the detection ability of some incipient faults, this paper proposes a fault detection method based on the dynamic k-nearest neighbor model and Dual Control Chart (DKNN-DCC), which can improve the incipient fault detection performance by using long-sequence dynamic detection. The proposed method is verified by the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process. The experimental results show the effectiveness of the proposed method in incipient fault detection compared with traditional dynamic detection methods. Note to Practitioners —This paper presents a novel incipient fault detection method, which directly mines the long-sequence dynamic abnormal information from the process variable and overcomes the problem of some abnormal information being submerged in the $T^{2}$ statistic calculated based on the matrix multiplication transformation. The proposed method can detect incipient faults that are not easily detected by some traditional methods and can help operators find the abnormal and avoid more serious losses. The structure of the proposed method jumps out of the frameworks of traditional dynamic detection methods, which is feasible to apply to different stable industrial processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合欢发布了新的文献求助10
1秒前
2秒前
小刘发布了新的文献求助10
3秒前
南南东完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
胖胖完成签到,获得积分10
5秒前
科研通AI6应助scugy采纳,获得10
5秒前
Echo发布了新的文献求助10
5秒前
fsznc1完成签到 ,获得积分0
5秒前
王雅发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
李爱国应助mushini采纳,获得10
7秒前
vigorous发布了新的文献求助10
7秒前
banboo发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
活泼的飞扬完成签到,获得积分10
9秒前
大模型应助laurel采纳,获得10
9秒前
汉堡包应助Xxxxyg采纳,获得10
9秒前
蓝天发布了新的文献求助10
9秒前
Geist完成签到,获得积分10
10秒前
廿一完成签到,获得积分10
10秒前
bkagyin应助二十一日采纳,获得10
10秒前
合欢完成签到,获得积分10
10秒前
Shelley发布了新的文献求助10
11秒前
hhh发布了新的文献求助10
11秒前
天天发布了新的文献求助10
12秒前
一品真意发布了新的文献求助10
12秒前
123lx完成签到,获得积分10
12秒前
12秒前
布丁发布了新的文献求助10
12秒前
平淡的绿凝完成签到,获得积分10
13秒前
btb完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909