A Fault Detection Method Based on the Dynamic k-Nearest Neighbor Model and Dual Control Chart

符号 故障检测与隔离 算法 计算机科学 序列(生物学) 数学 人工智能 算术 遗传学 生物 执行机构
作者
Liang Liu,Jianchang Liu,Honghai Wang,Shubin Tan,Yuanchao Liu,Miao Yu,Peng Xu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3332452
摘要

The incipient fault detection of a complex industrial process is a challenging problem for traditional dynamic detection methods. Traditional dynamic detection methods usually decouple the correlations among the variables and dynamic correlations simultaneously, which makes the two types of correlations mixed and may lead to performance deterioration in long-sequence dynamic detection. Some incipient faults may not change the amplitudes of process variables but change the long-sequence dynamic features. Based on the $T^{2}$ statistic and matrix multiplication transformation ( $T^{2}$ S-MMT), traditional dynamic detection methods can detect many faults effectively. However, the $T^{2}$ S-MMT can not effectively detect some incipient faults due to the above two types of correlations mixed. In order to overcome the shortcomings of $T^{2}$ S-MMT and improve the detection ability of some incipient faults, this paper proposes a fault detection method based on the dynamic k-nearest neighbor model and Dual Control Chart (DKNN-DCC), which can improve the incipient fault detection performance by using long-sequence dynamic detection. The proposed method is verified by the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process. The experimental results show the effectiveness of the proposed method in incipient fault detection compared with traditional dynamic detection methods. Note to Practitioners —This paper presents a novel incipient fault detection method, which directly mines the long-sequence dynamic abnormal information from the process variable and overcomes the problem of some abnormal information being submerged in the $T^{2}$ statistic calculated based on the matrix multiplication transformation. The proposed method can detect incipient faults that are not easily detected by some traditional methods and can help operators find the abnormal and avoid more serious losses. The structure of the proposed method jumps out of the frameworks of traditional dynamic detection methods, which is feasible to apply to different stable industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研废物采纳,获得10
刚刚
2秒前
朝菌完成签到,获得积分10
2秒前
2秒前
3秒前
Johnwick完成签到,获得积分20
4秒前
今后应助美好斓采纳,获得30
5秒前
129600完成签到,获得积分10
5秒前
5656完成签到 ,获得积分10
7秒前
月yue发布了新的文献求助10
7秒前
jerry完成签到,获得积分20
8秒前
Johnwick发布了新的文献求助10
8秒前
9秒前
快乐蜗牛完成签到,获得积分10
10秒前
10秒前
64658应助LL采纳,获得10
11秒前
乐乐应助jerry采纳,获得10
11秒前
罗新燕完成签到,获得积分20
12秒前
13秒前
研友_VZG7GZ应助Jeffery426采纳,获得10
14秒前
mlzmlz完成签到,获得积分0
14秒前
14秒前
mango完成签到,获得积分10
14秒前
月yue完成签到,获得积分10
17秒前
罗新燕发布了新的文献求助10
19秒前
Owen应助592lyc采纳,获得10
21秒前
jason完成签到,获得积分0
21秒前
22秒前
轻狂书生发布了新的文献求助10
23秒前
朝闻道完成签到 ,获得积分10
24秒前
领导范儿应助心灵美凝竹采纳,获得10
24秒前
美好斓发布了新的文献求助30
26秒前
FKVB_完成签到 ,获得积分10
26秒前
26秒前
27秒前
充电宝应助美美桑内采纳,获得10
27秒前
28秒前
酷波er应助祁尒采纳,获得10
30秒前
30秒前
1号完成签到 ,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203698
求助须知:如何正确求助?哪些是违规求助? 4383107
关于积分的说明 13648087
捐赠科研通 4240691
什么是DOI,文献DOI怎么找? 2326584
邀请新用户注册赠送积分活动 1324220
关于科研通互助平台的介绍 1276296