A Fault Detection Method Based on the Dynamic k-Nearest Neighbor Model and Dual Control Chart

符号 故障检测与隔离 算法 计算机科学 序列(生物学) 数学 人工智能 算术 生物 执行机构 遗传学
作者
Liang Liu,Jianchang Liu,Honghai Wang,Shubin Tan,Yuanchao Liu,Miao Yu,Peng Xu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3332452
摘要

The incipient fault detection of a complex industrial process is a challenging problem for traditional dynamic detection methods. Traditional dynamic detection methods usually decouple the correlations among the variables and dynamic correlations simultaneously, which makes the two types of correlations mixed and may lead to performance deterioration in long-sequence dynamic detection. Some incipient faults may not change the amplitudes of process variables but change the long-sequence dynamic features. Based on the $T^{2}$ statistic and matrix multiplication transformation ( $T^{2}$ S-MMT), traditional dynamic detection methods can detect many faults effectively. However, the $T^{2}$ S-MMT can not effectively detect some incipient faults due to the above two types of correlations mixed. In order to overcome the shortcomings of $T^{2}$ S-MMT and improve the detection ability of some incipient faults, this paper proposes a fault detection method based on the dynamic k-nearest neighbor model and Dual Control Chart (DKNN-DCC), which can improve the incipient fault detection performance by using long-sequence dynamic detection. The proposed method is verified by the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process. The experimental results show the effectiveness of the proposed method in incipient fault detection compared with traditional dynamic detection methods. Note to Practitioners —This paper presents a novel incipient fault detection method, which directly mines the long-sequence dynamic abnormal information from the process variable and overcomes the problem of some abnormal information being submerged in the $T^{2}$ statistic calculated based on the matrix multiplication transformation. The proposed method can detect incipient faults that are not easily detected by some traditional methods and can help operators find the abnormal and avoid more serious losses. The structure of the proposed method jumps out of the frameworks of traditional dynamic detection methods, which is feasible to apply to different stable industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
釉质牙医发布了新的文献求助10
刚刚
顾矜应助huang采纳,获得20
刚刚
1秒前
gonna完成签到,获得积分10
2秒前
5秒前
6秒前
小蘑菇应助DZ采纳,获得10
6秒前
huxuehong完成签到,获得积分10
6秒前
俭朴的不可完成签到,获得积分10
6秒前
kingJames发布了新的文献求助10
7秒前
阔达梦蕊完成签到,获得积分10
7秒前
lnb666777888完成签到,获得积分10
8秒前
8秒前
敬敬完成签到,获得积分10
9秒前
EBA发布了新的文献求助10
9秒前
10秒前
美丽的小羊完成签到 ,获得积分10
10秒前
huang发布了新的文献求助20
12秒前
14秒前
14秒前
14秒前
nunu完成签到 ,获得积分20
14秒前
木子发布了新的文献求助10
14秒前
17秒前
许昊龙发布了新的文献求助10
17秒前
17秒前
DZ发布了新的文献求助10
18秒前
jinyue完成签到,获得积分10
19秒前
19秒前
abcdv发布了新的文献求助10
19秒前
所所应助Alibizia采纳,获得10
19秒前
JUSTDOIT发布了新的文献求助10
22秒前
Ava应助冰雪物语采纳,获得10
23秒前
楠楠发布了新的文献求助10
23秒前
传奇3应助DZ采纳,获得10
24秒前
abcdv完成签到,获得积分10
27秒前
CyrusSo524应助JUSTDOIT采纳,获得10
28秒前
29秒前
今后应助shaoshao86采纳,获得10
31秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182