A Fault Detection Method Based on the Dynamic k-Nearest Neighbor Model and Dual Control Chart

符号 故障检测与隔离 算法 计算机科学 序列(生物学) 数学 人工智能 算术 遗传学 生物 执行机构
作者
Liang Liu,Jianchang Liu,Honghai Wang,Shubin Tan,Yuanchao Liu,Miao Yu,Peng Xu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3332452
摘要

The incipient fault detection of a complex industrial process is a challenging problem for traditional dynamic detection methods. Traditional dynamic detection methods usually decouple the correlations among the variables and dynamic correlations simultaneously, which makes the two types of correlations mixed and may lead to performance deterioration in long-sequence dynamic detection. Some incipient faults may not change the amplitudes of process variables but change the long-sequence dynamic features. Based on the $T^{2}$ statistic and matrix multiplication transformation ( $T^{2}$ S-MMT), traditional dynamic detection methods can detect many faults effectively. However, the $T^{2}$ S-MMT can not effectively detect some incipient faults due to the above two types of correlations mixed. In order to overcome the shortcomings of $T^{2}$ S-MMT and improve the detection ability of some incipient faults, this paper proposes a fault detection method based on the dynamic k-nearest neighbor model and Dual Control Chart (DKNN-DCC), which can improve the incipient fault detection performance by using long-sequence dynamic detection. The proposed method is verified by the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process. The experimental results show the effectiveness of the proposed method in incipient fault detection compared with traditional dynamic detection methods. Note to Practitioners —This paper presents a novel incipient fault detection method, which directly mines the long-sequence dynamic abnormal information from the process variable and overcomes the problem of some abnormal information being submerged in the $T^{2}$ statistic calculated based on the matrix multiplication transformation. The proposed method can detect incipient faults that are not easily detected by some traditional methods and can help operators find the abnormal and avoid more serious losses. The structure of the proposed method jumps out of the frameworks of traditional dynamic detection methods, which is feasible to apply to different stable industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助CHL5722采纳,获得10
2秒前
3秒前
心灵尔安完成签到,获得积分10
4秒前
斯文败类应助北冥鱼采纳,获得10
4秒前
千纸鹤发布了新的文献求助10
5秒前
6秒前
汉堡包应助赵丽红采纳,获得10
6秒前
btyjs完成签到,获得积分10
6秒前
7秒前
捏个小雪团完成签到 ,获得积分10
9秒前
JamesPei应助虚幻心锁采纳,获得10
9秒前
马海鑫完成签到 ,获得积分10
10秒前
11秒前
欣喜书蕾完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
铲铲大王完成签到 ,获得积分10
14秒前
氕氘氚完成签到 ,获得积分10
16秒前
Lxx777完成签到,获得积分10
16秒前
闪闪的炳发布了新的文献求助10
16秒前
18秒前
孔wj完成签到,获得积分10
18秒前
在水一方应助江思可采纳,获得10
18秒前
inches完成签到 ,获得积分10
19秒前
20秒前
虚幻心锁发布了新的文献求助10
20秒前
Doki完成签到 ,获得积分20
20秒前
科研通AI5应助热孜宛古丽采纳,获得10
20秒前
Lucas应助yinyuwei采纳,获得10
21秒前
可爱的函函应助Suniex采纳,获得10
22秒前
22秒前
22秒前
An发布了新的文献求助10
23秒前
科研通AI6应助H2O采纳,获得10
25秒前
25秒前
qiuqqq发布了新的文献求助10
26秒前
Ikejima完成签到,获得积分10
27秒前
28秒前
星辰大海应助北冥鱼采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883328
求助须知:如何正确求助?哪些是违规求助? 4168897
关于积分的说明 12935533
捐赠科研通 3929248
什么是DOI,文献DOI怎么找? 2155967
邀请新用户注册赠送积分活动 1174364
关于科研通互助平台的介绍 1079108