Dynamic UAV Swarm Collaboration for Multi-Targets Tracking Under Malicious Jamming: Joint Power, Path and Target Association Optimization

干扰 接头(建筑物) 路径(计算) 计算机科学 联想(心理学) 群体行为 跟踪(教育) 功率(物理) 粒子群优化 实时计算 工程类 计算机网络 人工智能 物理 哲学 机器学习 认识论 建筑工程 热力学 量子力学 教育学 心理学
作者
Lanhua Xiang,Fengyu Wang,Wenjun Xu,Tiankui Zhang,Miao Pan,Zhu Han
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 5410-5425 被引量:1
标识
DOI:10.1109/tvt.2023.3333054
摘要

In this paper, the multi-target tracking (MTT) with an unmanned aerial vehicle (UAV) swarm is investigated in the presence of jammers, where UAVs in the swarm communicate with each other to exchange information of targets during tracking. The communication between UAVs suffers from severe interference, including inter-UAV interference and jamming, thus leading to a deteriorated quality of MTT. To mitigate the interference and achieve MTT, we formulate an interference minimization problem by jointly optimizing UAV's sub-swarm division, trajectory, and power, subject to the constraint of MTT, collision prevention, flying ability, and UAV energy consumption. Due to the multiple coupling of sub-swarm division, trajectory, and power, the proposed optimization problem is NP-hard. To solve this challenging problem, it is decomposed into three subproblems, i.e., target association, path plan, and power control. First, a cluster-evolutionary target association (CETA) algorithm is proposed, which involves dividing the UAV swarm into multiple sub-swarms and individually matching these sub-swarms to targets. Second, a jamming-sensitive and singular case tolerance (JSSCT)-artificial potential field (APF) algorithm is proposed to plan trajectory for tracking the targets. Third, we develop a jamming-aware mean field game (JA-MFG) power control scheme, where a novel cost function is established considering the total interference. Finally, to minimize the total interference, a dynamic collaboration approach is designed. Different from traditional alternative iteration algorithms, our proposed dynamic collaboration approach triggers the updates of the sub-swarm division and UAV trajectory, and periodically updates the transmission power. Simulation results validate that the proposed dynamic collaboration approach reduces average total interference, tracking steps, and target switching times by 28%, 33%, and 48%, respectively, comparing to existing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助伶俐凡白采纳,获得10
刚刚
1秒前
1秒前
CodeCraft应助黄婷萱采纳,获得10
1秒前
六元一斤虾完成签到 ,获得积分10
1秒前
勤奋傲云完成签到,获得积分10
1秒前
李健的小迷弟应助xl采纳,获得10
2秒前
酷波er应助董先生采纳,获得10
4秒前
霍笑寒完成签到,获得积分10
4秒前
Steven发布了新的文献求助50
4秒前
地平完成签到,获得积分10
4秒前
5秒前
从嘉发布了新的文献求助10
5秒前
6秒前
共享精神应助袁露采纳,获得30
6秒前
8秒前
科目三应助wgnahoa采纳,获得10
8秒前
9秒前
充电宝应助LI电池采纳,获得10
9秒前
认真搞科研啦完成签到,获得积分10
10秒前
退学炒股发布了新的文献求助10
10秒前
女爰舍予发布了新的文献求助10
10秒前
13秒前
ww发布了新的文献求助10
13秒前
汉堡王完成签到,获得积分10
15秒前
骜111完成签到,获得积分10
15秒前
15秒前
董先生发布了新的文献求助10
17秒前
17秒前
18秒前
Am1r完成签到,获得积分10
18秒前
tangtang完成签到,获得积分10
18秒前
19秒前
白嫖论文发布了新的文献求助10
19秒前
luvie完成签到,获得积分10
20秒前
21秒前
23秒前
香蕉觅云应助yuan采纳,获得10
24秒前
香蕉觅云应助温暖的复天采纳,获得30
24秒前
卿xx完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875