Dynamic UAV Swarm Collaboration for Multi-Targets Tracking Under Malicious Jamming: Joint Power, Path and Target Association Optimization

干扰 接头(建筑物) 路径(计算) 计算机科学 联想(心理学) 群体行为 跟踪(教育) 功率(物理) 粒子群优化 实时计算 工程类 计算机网络 人工智能 物理 热力学 建筑工程 心理学 教育学 哲学 认识论 量子力学 机器学习
作者
Lanhua Xiang,Fengyu Wang,Wenjun Xu,Tiankui Zhang,Miao Pan,Zhu Han
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 5410-5425 被引量:1
标识
DOI:10.1109/tvt.2023.3333054
摘要

In this paper, the multi-target tracking (MTT) with an unmanned aerial vehicle (UAV) swarm is investigated in the presence of jammers, where UAVs in the swarm communicate with each other to exchange information of targets during tracking. The communication between UAVs suffers from severe interference, including inter-UAV interference and jamming, thus leading to a deteriorated quality of MTT. To mitigate the interference and achieve MTT, we formulate an interference minimization problem by jointly optimizing UAV's sub-swarm division, trajectory, and power, subject to the constraint of MTT, collision prevention, flying ability, and UAV energy consumption. Due to the multiple coupling of sub-swarm division, trajectory, and power, the proposed optimization problem is NP-hard. To solve this challenging problem, it is decomposed into three subproblems, i.e., target association, path plan, and power control. First, a cluster-evolutionary target association (CETA) algorithm is proposed, which involves dividing the UAV swarm into multiple sub-swarms and individually matching these sub-swarms to targets. Second, a jamming-sensitive and singular case tolerance (JSSCT)-artificial potential field (APF) algorithm is proposed to plan trajectory for tracking the targets. Third, we develop a jamming-aware mean field game (JA-MFG) power control scheme, where a novel cost function is established considering the total interference. Finally, to minimize the total interference, a dynamic collaboration approach is designed. Different from traditional alternative iteration algorithms, our proposed dynamic collaboration approach triggers the updates of the sub-swarm division and UAV trajectory, and periodically updates the transmission power. Simulation results validate that the proposed dynamic collaboration approach reduces average total interference, tracking steps, and target switching times by 28%, 33%, and 48%, respectively, comparing to existing baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WENBENDING完成签到,获得积分10
1秒前
大莹莹完成签到 ,获得积分10
1秒前
skyleon完成签到,获得积分10
1秒前
闪闪的凉面完成签到,获得积分10
2秒前
2秒前
水123发布了新的文献求助10
2秒前
小闵完成签到,获得积分10
4秒前
南风完成签到 ,获得积分10
4秒前
5秒前
6秒前
牛肉面完成签到 ,获得积分10
7秒前
怕孤独的访云完成签到 ,获得积分10
8秒前
蓝天发布了新的文献求助10
8秒前
Smile_Uo完成签到,获得积分10
8秒前
9秒前
文麒发布了新的文献求助10
10秒前
xurui_s完成签到 ,获得积分10
12秒前
Njzs完成签到 ,获得积分10
12秒前
快乐水完成签到,获得积分20
12秒前
无极微光应助优雅傲霜采纳,获得20
12秒前
风筝发布了新的文献求助10
13秒前
14秒前
philippe完成签到,获得积分10
15秒前
楠楠完成签到,获得积分10
16秒前
稳重诗珊完成签到,获得积分10
16秒前
wxy完成签到,获得积分10
17秒前
森源海发布了新的文献求助10
17秒前
传统的孤丝完成签到 ,获得积分10
17秒前
wxy发布了新的文献求助10
19秒前
还活着发布了新的文献求助10
20秒前
20秒前
开放雪珊完成签到,获得积分20
21秒前
geqian完成签到,获得积分20
21秒前
CUI666完成签到 ,获得积分10
23秒前
嘿嘿应助AbleTF采纳,获得10
23秒前
pluto应助迷人雪碧采纳,获得10
23秒前
开朗磬完成签到 ,获得积分10
23秒前
23秒前
Wu完成签到 ,获得积分10
23秒前
星期八发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814