Enhancing vulnerability detection via AST decomposition and neural sub-tree encoding

计算机科学 脆弱性(计算) 树(集合论) 编码(内存) 数据挖掘 人工智能 计算机安全 数学分析 数学
作者
Zhenzhou Tian,Binhui Tian,Jiajun Lv,Yanping Chen,Lingwei Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121865-121865 被引量:25
标识
DOI:10.1016/j.eswa.2023.121865
摘要

The explosive growth of software vulnerabilities poses a serious threat to the system security and has become one of the urgent problems of the day. However, existing vulnerability detection methods are still faced with limitations in reaching the balance between detection accuracy, efficiency and applicability. Following a divide-and-conquer strategy, this paper proposes TrVD (abstract syntax Tree decomposition based Vulnerability Detector) to disclose the indicative semantics implied in the source code fragments for accurate and efficient vulnerability detection. To facilitate the capture of subtle semantic features, TrVD converts the AST of a code fragment into an ordered set of sub-trees of restricted sizes and depths with a novel decomposition algorithm. The semantics of each sub-tree can thus be effectively collected with a carefully designed tree-structured neural network. Finally, a Transformer-style encoder is utilized to aggregate the long-range contextual semantics of all sub-trees into a vulnerability-specific vector to represent the target code fragment. The extensive experiments conducted on five large datasets consisting of diverse real-world and synthetic vulnerable samples demonstrate the performance superiority of TrVD against SOTA approaches in detecting the presence of vulnerabilities and pinpointing the vulnerability types. The ablation studies also confirm the effectiveness of TrVD's core designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yepp发布了新的文献求助10
1秒前
研友_8KKmR8发布了新的文献求助10
1秒前
1秒前
3秒前
sjyplus1发布了新的文献求助10
5秒前
6秒前
一路狂奔等不了完成签到 ,获得积分10
6秒前
Lignin发布了新的文献求助10
6秒前
Akim应助能干的吐司采纳,获得10
6秒前
MrRen完成签到,获得积分10
7秒前
Wd完成签到,获得积分20
8秒前
Menand完成签到,获得积分10
9秒前
11秒前
11秒前
FashionBoy应助Lignin采纳,获得10
12秒前
优雅梨愁发布了新的文献求助10
12秒前
星辰大海应助Lignin采纳,获得10
12秒前
大个应助Lignin采纳,获得10
12秒前
完美世界应助Lignin采纳,获得10
12秒前
隐形曼青应助Lignin采纳,获得10
12秒前
酷波er应助sjyplus1采纳,获得10
12秒前
赘婿应助Lignin采纳,获得10
12秒前
壮观听白完成签到,获得积分10
13秒前
13秒前
13秒前
丰富听白应助xzy998采纳,获得60
14秒前
14秒前
科目三应助Wd采纳,获得10
14秒前
15秒前
15秒前
fz1关闭了fz1文献求助
16秒前
Apple发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
科目三应助Lignin采纳,获得10
19秒前
所所应助Lignin采纳,获得10
19秒前
英俊的铭应助Lignin采纳,获得10
19秒前
Akim应助Lignin采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640