Enhancing vulnerability detection via AST decomposition and neural sub-tree encoding

计算机科学 脆弱性(计算) 树(集合论) 编码(内存) 数据挖掘 人工智能 计算机安全 数学分析 数学
作者
Zhenzhou Tian,Binhui Tian,Jiajun Lv,Yanping Chen,Lingwei Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121865-121865 被引量:11
标识
DOI:10.1016/j.eswa.2023.121865
摘要

The explosive growth of software vulnerabilities poses a serious threat to the system security and has become one of the urgent problems of the day. However, existing vulnerability detection methods are still faced with limitations in reaching the balance between detection accuracy, efficiency and applicability. Following a divide-and-conquer strategy, this paper proposes TrVD (abstract syntax Tree decomposition based Vulnerability Detector) to disclose the indicative semantics implied in the source code fragments for accurate and efficient vulnerability detection. To facilitate the capture of subtle semantic features, TrVD converts the AST of a code fragment into an ordered set of sub-trees of restricted sizes and depths with a novel decomposition algorithm. The semantics of each sub-tree can thus be effectively collected with a carefully designed tree-structured neural network. Finally, a Transformer-style encoder is utilized to aggregate the long-range contextual semantics of all sub-trees into a vulnerability-specific vector to represent the target code fragment. The extensive experiments conducted on five large datasets consisting of diverse real-world and synthetic vulnerable samples demonstrate the performance superiority of TrVD against SOTA approaches in detecting the presence of vulnerabilities and pinpointing the vulnerability types. The ablation studies also confirm the effectiveness of TrVD's core designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
priss111应助慈祥的翠桃采纳,获得30
1秒前
FashionBoy应助慈祥的翠桃采纳,获得30
1秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
1秒前
不配.应助慈祥的翠桃采纳,获得10
1秒前
传奇3应助慈祥的翠桃采纳,获得10
2秒前
香蕉觅云应助慈祥的翠桃采纳,获得10
2秒前
2秒前
shinysparrow应助慈祥的翠桃采纳,获得100
2秒前
shinysparrow应助慈祥的翠桃采纳,获得100
2秒前
传奇3应助慈祥的翠桃采纳,获得10
2秒前
3秒前
菠萝蜜完成签到,获得积分10
3秒前
M2106完成签到,获得积分10
6秒前
青云完成签到,获得积分10
7秒前
姜梨完成签到 ,获得积分10
9秒前
9秒前
9秒前
活泼元瑶完成签到,获得积分20
9秒前
欢欢完成签到,获得积分10
10秒前
科研通AI2S应助M2106采纳,获得10
10秒前
11秒前
12秒前
筱小筱发布了新的文献求助10
12秒前
打打应助葭月十七采纳,获得10
12秒前
CKK完成签到,获得积分10
13秒前
活泼元瑶发布了新的文献求助10
14秒前
灵巧夜天完成签到,获得积分10
14秒前
14秒前
hegui发布了新的文献求助10
15秒前
16秒前
18秒前
皛皛应助ysssp采纳,获得10
20秒前
周周发布了新的文献求助10
21秒前
蘇q完成签到 ,获得积分10
21秒前
21秒前
欧拉欧拉欧拉完成签到 ,获得积分10
22秒前
闵安雁完成签到,获得积分10
22秒前
葭月十七发布了新的文献求助10
23秒前
foreverer完成签到,获得积分20
24秒前
你大米哥完成签到 ,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242601
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245228
捐赠科研通 2555424
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625605