Enhancing vulnerability detection via AST decomposition and neural sub-tree encoding

计算机科学 脆弱性(计算) 树(集合论) 编码(内存) 数据挖掘 人工智能 计算机安全 数学 数学分析
作者
Zhenzhou Tian,Binhui Tian,Jiajun Lv,Yanping Chen,Lingwei Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121865-121865 被引量:19
标识
DOI:10.1016/j.eswa.2023.121865
摘要

The explosive growth of software vulnerabilities poses a serious threat to the system security and has become one of the urgent problems of the day. However, existing vulnerability detection methods are still faced with limitations in reaching the balance between detection accuracy, efficiency and applicability. Following a divide-and-conquer strategy, this paper proposes TrVD (abstract syntax Tree decomposition based Vulnerability Detector) to disclose the indicative semantics implied in the source code fragments for accurate and efficient vulnerability detection. To facilitate the capture of subtle semantic features, TrVD converts the AST of a code fragment into an ordered set of sub-trees of restricted sizes and depths with a novel decomposition algorithm. The semantics of each sub-tree can thus be effectively collected with a carefully designed tree-structured neural network. Finally, a Transformer-style encoder is utilized to aggregate the long-range contextual semantics of all sub-trees into a vulnerability-specific vector to represent the target code fragment. The extensive experiments conducted on five large datasets consisting of diverse real-world and synthetic vulnerable samples demonstrate the performance superiority of TrVD against SOTA approaches in detecting the presence of vulnerabilities and pinpointing the vulnerability types. The ablation studies also confirm the effectiveness of TrVD's core designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的红牛完成签到,获得积分10
1秒前
扎心应助泽灵采纳,获得10
1秒前
柚子蟹完成签到,获得积分10
3秒前
Gene完成签到,获得积分10
4秒前
kuyi完成签到 ,获得积分10
4秒前
5秒前
孟琪富发布了新的文献求助10
6秒前
张雷应助安娜采纳,获得20
7秒前
YoroYoshi完成签到,获得积分10
7秒前
斯文败类应助科研鸟采纳,获得10
11秒前
HTT发布了新的文献求助30
11秒前
JL完成签到,获得积分10
12秒前
壹_完成签到,获得积分10
12秒前
归零完成签到,获得积分10
15秒前
15秒前
16秒前
泽灵完成签到,获得积分10
16秒前
17秒前
孟琪富完成签到,获得积分20
17秒前
小n完成签到,获得积分10
18秒前
汉堡包应助nixx采纳,获得10
22秒前
22秒前
Fairy完成签到 ,获得积分10
23秒前
23秒前
黄橙子完成签到 ,获得积分10
23秒前
HTT完成签到,获得积分20
24秒前
猫南北发布了新的文献求助10
27秒前
Lucas应助千万雷同采纳,获得10
27秒前
27秒前
28秒前
瑶_发布了新的文献求助10
29秒前
30秒前
爆米花应助嗯哼哈哈采纳,获得10
31秒前
科研鸟发布了新的文献求助10
32秒前
渴望成功的学术残废完成签到,获得积分10
32秒前
白色的小特完成签到,获得积分10
32秒前
32秒前
32秒前
香蕉觅云应助牛牛眉目采纳,获得10
34秒前
Pp发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388