Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study

纵向研究 特征选择 贝叶斯网络 心理学 婚姻状况 人口 机器学习 老年学 人工智能 计算机科学 医学 环境卫生 病理
作者
Zhang Hai-fen,Xiaotong Zhang,Xiaodong Yao,Yan Wang
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fpubh.2023.1259718
摘要

While Bayesian networks (BNs) represents a good approach to discussing factors related to many diseases, little attention has been poured into heart attack combined with hypertension (HAH) using BNs. This study aimed to explore the complex network relationships between HAH and its related factors, and to achieve the Bayesian reasoning for HAH, thereby, offering a scientific reference for the prevention and treatment of HAH.The data was downloaded from the Online Open Database of CHARLS 2018, a population-based longitudinal survey. In this study, we included 16 variables from data on demographic background, health status and functioning, and lifestyle. First, Elastic Net was first used to make a feature selection for highly-related variables for HAH, which were then included into BN model construction. The structural learning of BNs was achieved using Tabu algorithm and the parameter learning was conducted using maximum likelihood estimation.Among 19,752 individuals (9,313 men and 10,439 women) aged 64.73 ± 10.32 years, Among 19,752 individuals (9,313 men and 10,439 women), there are 8,370 ones without HAH (42.4%) and 11,382 ones with HAH (57.6%). What's more, after feature selection using Elastic Net, Physical activity, Residence, Internet access, Asset, Marital status, Sleep duration, Social activity, Educational levels, Alcohol consumption, Nap, BADL, IADL, Self report on health, and age were included into BN model establishment. BNs were constructed with 15 nodes and 25 directed edges. The results showed that age, sleep duration, physical activity and self-report on health are directly associated with HAH. Besides, educational levels and IADL could indirectly connect to HAH through physical activity; IADL and BADL could indirectly connect to HAH through Self report on health.BNs could graphically reveal the complex network relationship between HAH and its related factors. Besides, BNs allows for risk reasoning for HAH through Bayesian reasoning, which is more consistent with clinical practice and thus holds some application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZCL发布了新的文献求助10
刚刚
tangying8642发布了新的文献求助10
1秒前
2秒前
2秒前
彭于晏应助Wlna采纳,获得10
2秒前
黄淮二傻完成签到,获得积分20
3秒前
chenshen完成签到,获得积分10
3秒前
6秒前
无面男完成签到,获得积分10
7秒前
wgcheng发布了新的文献求助30
7秒前
dizi_88发布了新的文献求助10
10秒前
Yang完成签到 ,获得积分10
10秒前
在水一方应助Amelia采纳,获得10
11秒前
linddda完成签到,获得积分10
12秒前
Seeone完成签到 ,获得积分10
12秒前
你想不想变成一粒芝麻完成签到,获得积分10
12秒前
炸炸呦完成签到,获得积分20
13秒前
程老板完成签到,获得积分10
13秒前
认真的一刀完成签到 ,获得积分10
15秒前
稳重飞飞完成签到,获得积分10
16秒前
称心采枫完成签到 ,获得积分10
17秒前
cc完成签到 ,获得积分10
19秒前
21秒前
21秒前
wgcheng完成签到,获得积分10
22秒前
22秒前
烂漫夜梅完成签到,获得积分10
24秒前
allrubbish发布了新的文献求助10
25秒前
啦啦啦完成签到 ,获得积分10
26秒前
十二完成签到 ,获得积分10
26秒前
西宁完成签到,获得积分10
28秒前
鲤鱼问雁完成签到,获得积分10
28秒前
道友等等我完成签到,获得积分0
30秒前
苗条映之发布了新的文献求助10
30秒前
喜悦的水云完成签到 ,获得积分10
33秒前
zhang完成签到 ,获得积分10
34秒前
坦率的从波完成签到 ,获得积分10
34秒前
明亮的冰颜完成签到,获得积分10
36秒前
再沉默完成签到,获得积分10
36秒前
Richard完成签到 ,获得积分10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388