Popularity-aware sequential recommendation with user desire

人气 计算机科学 借记 推荐系统 反事实思维 依赖关系(UML) 情感(语言学) 人工智能 机器学习 心理学 沟通 社会心理学 认知科学
作者
Jiajin Wu,Bo Yang,Runze Mao,Qing Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121429-121429 被引量:10
标识
DOI:10.1016/j.eswa.2023.121429
摘要

In recent years, sequential recommendation system has attracted more and more attention from both academy and industry. Sequential recommendation treats the user’s historical behaviors as a sequence and captures the sequential dependency from it. Though the works on sequential recommendation have made great progress, sequential recommendation models still suffer from popularity bias. The existence of popularity bias is common in recommendation systems: the popular items are recommended overly while the less popular items which users may be interested in get fewer chances to be recommended than they should, which may negatively affect the recommendation accuracy and induce other problems such as Matthew Effect and Echo Chambers. Although there have been some works on alleviating popularity bias in traditional recommendation, there is still a lack of research on popularity bias in sequential recommendation. Because there exists complicated sequential dependency in sequences, the debiasing models designed for traditional recommendation cannot be applied directly, it is necessary to propose a debiasing model for sequential recommendation to take the complicated sequential dependency into account. To alleviate the popularity bias in sequential recommendation, we first propose a causal graph for sequential recommendation in which we propose to consider the dynamic user desire which would affect the effect of popularity. Then, we conduct intervention analysis and counterfactual reasoning to quantify the effect of popularity and reason about the user interaction probability in a hypothetical situation that the popularity is set to a certain value. Based on the results of obtained, we propose a new popularity-aware sequential recommendation model with user desire (PAUDRec) which consists of a Transformer-based module, a user desire module and a popularity effect module. Extensive experiments on four widely used benchmark datasets demonstrate that the proposed PAUDRec model outperforms the state-of-the-art sequential recommendation models while alleviating the popularity bias in sequential recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助piliayouxia采纳,获得10
1秒前
Superan发布了新的文献求助10
1秒前
大翟发布了新的文献求助10
2秒前
2秒前
传奇3应助端庄白开水采纳,获得10
2秒前
2秒前
嘉树林发布了新的文献求助10
2秒前
小酒窝周周完成签到 ,获得积分10
2秒前
陈佩chenpei完成签到,获得积分10
3秒前
3秒前
王小乔完成签到 ,获得积分10
3秒前
lvhuiqi完成签到,获得积分10
3秒前
Orange应助火星人采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
凤凰应助科研通管家采纳,获得100
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
dfm应助Tonald Yang采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
2331547774发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418877
求助须知:如何正确求助?哪些是违规求助? 4534462
关于积分的说明 14144391
捐赠科研通 4450753
什么是DOI,文献DOI怎么找? 2441377
邀请新用户注册赠送积分活动 1433091
关于科研通互助平台的介绍 1410502