已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Popularity-aware sequential recommendation with user desire

人气 计算机科学 借记 推荐系统 反事实思维 依赖关系(UML) 情感(语言学) 人工智能 机器学习 心理学 沟通 认知科学 社会心理学
作者
Jiajin Wu,Bo Yang,Runze Mao,Qing Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121429-121429 被引量:6
标识
DOI:10.1016/j.eswa.2023.121429
摘要

In recent years, sequential recommendation system has attracted more and more attention from both academy and industry. Sequential recommendation treats the user’s historical behaviors as a sequence and captures the sequential dependency from it. Though the works on sequential recommendation have made great progress, sequential recommendation models still suffer from popularity bias. The existence of popularity bias is common in recommendation systems: the popular items are recommended overly while the less popular items which users may be interested in get fewer chances to be recommended than they should, which may negatively affect the recommendation accuracy and induce other problems such as Matthew Effect and Echo Chambers. Although there have been some works on alleviating popularity bias in traditional recommendation, there is still a lack of research on popularity bias in sequential recommendation. Because there exists complicated sequential dependency in sequences, the debiasing models designed for traditional recommendation cannot be applied directly, it is necessary to propose a debiasing model for sequential recommendation to take the complicated sequential dependency into account. To alleviate the popularity bias in sequential recommendation, we first propose a causal graph for sequential recommendation in which we propose to consider the dynamic user desire which would affect the effect of popularity. Then, we conduct intervention analysis and counterfactual reasoning to quantify the effect of popularity and reason about the user interaction probability in a hypothetical situation that the popularity is set to a certain value. Based on the results of obtained, we propose a new popularity-aware sequential recommendation model with user desire (PAUDRec) which consists of a Transformer-based module, a user desire module and a popularity effect module. Extensive experiments on four widely used benchmark datasets demonstrate that the proposed PAUDRec model outperforms the state-of-the-art sequential recommendation models while alleviating the popularity bias in sequential recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
口外彭于晏完成签到,获得积分10
2秒前
洸彦完成签到 ,获得积分10
3秒前
Nacy发布了新的文献求助10
5秒前
tyd完成签到 ,获得积分10
6秒前
ww发布了新的文献求助10
7秒前
8秒前
情怀应助自治自律自洽采纳,获得10
8秒前
15秒前
小巧问芙完成签到 ,获得积分10
19秒前
许中原完成签到,获得积分10
19秒前
19秒前
Ava应助ww采纳,获得10
20秒前
28秒前
YOLO完成签到 ,获得积分10
32秒前
那些年完成签到 ,获得积分10
32秒前
33秒前
潇洒的灵萱完成签到,获得积分10
34秒前
34秒前
独特纸飞机完成签到 ,获得积分10
35秒前
37秒前
辛勤紫雪完成签到 ,获得积分10
41秒前
42秒前
Chris完成签到 ,获得积分0
43秒前
ww发布了新的文献求助10
43秒前
海底两万里给韦浩浩的求助进行了留言
43秒前
CallanRyan完成签到 ,获得积分10
46秒前
杨无敌完成签到 ,获得积分10
47秒前
49秒前
qqq完成签到 ,获得积分10
52秒前
JamesPei应助ww采纳,获得10
53秒前
53秒前
CallanRyan关注了科研通微信公众号
54秒前
文子完成签到 ,获得积分10
56秒前
wanci应助Nacy采纳,获得10
57秒前
58秒前
嘟嘟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
pp‘s完成签到 ,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265391
求助须知:如何正确求助?哪些是违规求助? 2905440
关于积分的说明 8333770
捐赠科研通 2575720
什么是DOI,文献DOI怎么找? 1400099
科研通“疑难数据库(出版商)”最低求助积分说明 654693
邀请新用户注册赠送积分活动 633509