Advancing polytrauma care: developing and validating machine learning models for early mortality prediction

医学 机器学习 多发伤 重症监护医学 医疗急救 计算机科学 急诊医学
作者
Wenxin He,Xiang Fu,Song Chen
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1)
标识
DOI:10.1186/s12967-023-04487-8
摘要

Abstract Background Rapid identification of high-risk polytrauma patients is crucial for early intervention and improved outcomes. This study aimed to develop and validate machine learning models for predicting 72 h mortality in adult polytrauma patients using readily available clinical parameters. Methods A retrospective analysis was conducted on polytrauma patients from the Dryad database and our institution. Missing values pertinent to eligible individuals within the Dryad database were compensated for through the k-nearest neighbor algorithm, subsequently randomizing them into training and internal validation factions on a 7:3 ratio. The patients of our institution functioned as external validation cohorts. The predictive efficacy of random forest (RF), neural network, and XGBoost models was assessed through an exhaustive suite of performance indicators. The SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods were engaged to explain the supreme-performing model. Conclusively, restricted cubic spline analysis and multivariate logistic regression were employed as sensitivity analyses to verify the robustness of the findings. Results Parameters including age, body mass index, Glasgow Coma Scale, Injury Severity Score, pH, base excess, and lactate emerged as pivotal predictors of 72 h mortality. The RF model exhibited unparalleled performance, boasting an area under the receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI] 0.84–0.89), an area under the precision-recall curve (AUPRC) of 0.67 (95% CI 0.61–0.73), and an accuracy of 0.83 (95% CI 0.81–0.86) in the internal validation cohort, paralleled by an AUROC of 0.98 (95% CI 0.97–0.99), an AUPRC of 0.88 (95% CI 0.83–0.93), and an accuracy of 0.97 (95% CI 0.96–0.98) in the external validation cohort. It provided the highest net benefit in the decision curve analysis in relation to the other models. The outcomes of the sensitivity examinations were congruent with those inferred from SHAP and LIME. Conclusions The RF model exhibited the best performance in predicting 72 h mortality in adult polytrauma patients and has the potential to aid clinicians in identifying high-risk patients and guiding clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼白晴完成签到 ,获得积分10
4秒前
20秒前
zl发布了新的文献求助10
25秒前
Duduk完成签到 ,获得积分10
26秒前
回首不再是少年完成签到,获得积分0
26秒前
xiahongmei完成签到 ,获得积分10
33秒前
高兴寒梦完成签到 ,获得积分10
34秒前
三伏天完成签到,获得积分10
36秒前
CodeCraft应助zl采纳,获得10
36秒前
妮妮完成签到 ,获得积分10
38秒前
Jason发布了新的文献求助10
39秒前
酷酷涫完成签到 ,获得积分0
40秒前
一个小胖子完成签到,获得积分10
41秒前
45秒前
香蕉觅云应助甜蜜的代容采纳,获得10
48秒前
郑洲完成签到 ,获得积分10
48秒前
Ray发布了新的文献求助10
50秒前
Jason完成签到,获得积分10
53秒前
怡心亭完成签到 ,获得积分10
57秒前
棉花糖猫弦完成签到 ,获得积分10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
海孩子完成签到,获得积分10
1分钟前
研友_Z60x5L完成签到 ,获得积分10
1分钟前
SimonShaw完成签到,获得积分10
1分钟前
研友发布了新的文献求助10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
竹羽完成签到 ,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
cuicy完成签到 ,获得积分10
1分钟前
tesla完成签到 ,获得积分10
1分钟前
钱念波完成签到 ,获得积分10
1分钟前
胖胖完成签到 ,获得积分10
2分钟前
HH完成签到 ,获得积分10
2分钟前
小刘哥加油完成签到 ,获得积分10
2分钟前
nianshu完成签到 ,获得积分10
2分钟前
纯真的诗兰完成签到,获得积分10
2分钟前
玩命的无春完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768880
捐赠科研通 2440255
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792