Blueberry Yield Estimation Through Multi-View Imagery with YOLOv8 Object Detection

计算机科学 人工智能 目标检测 估计 对象(语法) 盈利能力指数 机器学习 计算机视觉 模式识别(心理学) 财务 经济 管理
作者
Zhengkun Li,Changying Li,Patricio Muñoz
标识
DOI:10.13031/aim.202300883
摘要

Abstract. Accurately estimating blueberry yields is crucial for farmers aiming to optimize crop management practices and enhance agricultural profitability. However, the inherent challenges posed by blueberries growing in clusters and being frequently occluded by leaves or other fruits make direct counting of individual blueberries nearly impossible. Existing approaches rely on sampling a few plants or clusters to estimate yields based on expert knowledge or employ indirect regression analysis using yield-related features as inputs for predictive models. With recent advancements in deep learning technologies, there has been a growing interest in leveraging machine vision techniques to directly count fruits for yield estimation. In this paper, we propose a novel approach for blueberry yield estimation utilizing multi-view imagery in conjunction with the state-of-the-art YOLOv8 object detection framework. Our methodology involves a customized mobile platform equipped with a multi-camera sensing system that captures images of blueberry plants from three distinct views (top, left, and right) to ensure comprehensive coverage. We train a YOLOv8x model as the detector to accurately detect and localize individual blueberries within the images. Accounting for the overlapping information from the three views, we employ a regression model to estimate the total number of blueberries per plant. To evaluate the effectiveness of our approach, we compare single-view and multi-view methodologies and assess their estimation performance on 12 individual blueberry plants with varying genotypes. The multi-view imagery approach demonstrates promising results, exhibiting a mean absolute percentage error of 24.6% and an R2 value of 0.77. These figures represent a substantial improvement of 5.2% to 15.7% when compared to single-view approaches. Additionally, leveraging the predicted bounding boxes of blueberries, we are able to generate density maps that facilitate further phenotyping analysis. The methodology presented in this study holds significant potential for accurately and autonomously estimating blueberry fields, enabling the generation of high-resolution yield density maps, even at the individual plant level, with the aid of mobile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samuealndjw完成签到,获得积分10
刚刚
若杉完成签到 ,获得积分10
刚刚
tyy发布了新的文献求助10
1秒前
iNk应助ding5采纳,获得20
2秒前
十二发布了新的文献求助10
2秒前
枫叶的脚步完成签到,获得积分10
2秒前
wanci应助剩下的盛夏采纳,获得10
2秒前
路途遥远发布了新的文献求助10
3秒前
小轩完成签到,获得积分10
3秒前
汉中太守魏延完成签到,获得积分10
3秒前
Hello应助我爱学习77采纳,获得10
3秒前
gwff完成签到,获得积分10
3秒前
3秒前
Owen应助EasonYan采纳,获得10
4秒前
NSGB完成签到 ,获得积分10
4秒前
景莉莉完成签到,获得积分10
4秒前
江风完成签到,获得积分10
4秒前
4秒前
lin应助tyy采纳,获得10
5秒前
研友_VZG7GZ应助tyy采纳,获得10
5秒前
LCQ完成签到,获得积分10
5秒前
乔思完成签到,获得积分10
5秒前
5秒前
6秒前
皮皮虾完成签到 ,获得积分10
6秒前
6秒前
6秒前
丘比特应助自由的无色采纳,获得30
6秒前
Any发布了新的文献求助10
6秒前
7秒前
LCQ发布了新的文献求助10
8秒前
郑森友完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Owen应助乔思采纳,获得10
10秒前
追寻迎夏完成签到,获得积分10
11秒前
11秒前
太叔千愁完成签到,获得积分10
12秒前
12秒前
大模型应助康德杰采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836