Blueberry Yield Estimation Through Multi-View Imagery with YOLOv8 Object Detection

计算机科学 人工智能 目标检测 估计 对象(语法) 盈利能力指数 机器学习 计算机视觉 模式识别(心理学) 管理 财务 经济
作者
Zhengkun Li,Changying Li,Patricio R. Muñoz
标识
DOI:10.13031/aim.202300883
摘要

Abstract. Accurately estimating blueberry yields is crucial for farmers aiming to optimize crop management practices and enhance agricultural profitability. However, the inherent challenges posed by blueberries growing in clusters and being frequently occluded by leaves or other fruits make direct counting of individual blueberries nearly impossible. Existing approaches rely on sampling a few plants or clusters to estimate yields based on expert knowledge or employ indirect regression analysis using yield-related features as inputs for predictive models. With recent advancements in deep learning technologies, there has been a growing interest in leveraging machine vision techniques to directly count fruits for yield estimation. In this paper, we propose a novel approach for blueberry yield estimation utilizing multi-view imagery in conjunction with the state-of-the-art YOLOv8 object detection framework. Our methodology involves a customized mobile platform equipped with a multi-camera sensing system that captures images of blueberry plants from three distinct views (top, left, and right) to ensure comprehensive coverage. We train a YOLOv8x model as the detector to accurately detect and localize individual blueberries within the images. Accounting for the overlapping information from the three views, we employ a regression model to estimate the total number of blueberries per plant. To evaluate the effectiveness of our approach, we compare single-view and multi-view methodologies and assess their estimation performance on 12 individual blueberry plants with varying genotypes. The multi-view imagery approach demonstrates promising results, exhibiting a mean absolute percentage error of 24.6% and an R2 value of 0.77. These figures represent a substantial improvement of 5.2% to 15.7% when compared to single-view approaches. Additionally, leveraging the predicted bounding boxes of blueberries, we are able to generate density maps that facilitate further phenotyping analysis. The methodology presented in this study holds significant potential for accurately and autonomously estimating blueberry fields, enabling the generation of high-resolution yield density maps, even at the individual plant level, with the aid of mobile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
清心淡如水完成签到,获得积分10
1秒前
漂亮的笑柳完成签到,获得积分20
4秒前
5秒前
万能图书馆应助Zhong采纳,获得10
6秒前
小二郎应助打豆豆的灰鸭采纳,获得10
6秒前
6秒前
7秒前
7秒前
Hhhh完成签到 ,获得积分10
7秒前
Orange应助秋2采纳,获得10
9秒前
小肚肚发布了新的文献求助10
10秒前
开朗以亦发布了新的文献求助10
11秒前
11秒前
GRG完成签到 ,获得积分10
12秒前
lucky发布了新的文献求助10
13秒前
hczx发布了新的文献求助10
13秒前
13秒前
13秒前
思源应助njzhangyanyang采纳,获得10
13秒前
Mia完成签到,获得积分10
15秒前
FashionBoy应助wangkun090121采纳,获得10
15秒前
Yang完成签到,获得积分10
16秒前
17秒前
开朗以亦完成签到,获得积分20
17秒前
蔡雨岑完成签到 ,获得积分10
18秒前
Zhong发布了新的文献求助10
18秒前
19秒前
白菜发布了新的文献求助10
19秒前
大吴克发布了新的文献求助10
19秒前
20秒前
AA完成签到,获得积分10
22秒前
小翼完成签到,获得积分10
22秒前
keyanthrouth发布了新的文献求助10
23秒前
Zhong完成签到,获得积分20
24秒前
搜集达人应助www采纳,获得10
25秒前
小二郎应助机会啊采纳,获得10
25秒前
77完成签到,获得积分10
26秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328181
求助须知:如何正确求助?哪些是违规求助? 2958278
关于积分的说明 8589965
捐赠科研通 2636636
什么是DOI,文献DOI怎么找? 1443053
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733