亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blueberry Yield Estimation Through Multi-View Imagery with YOLOv8 Object Detection

计算机科学 人工智能 目标检测 估计 对象(语法) 盈利能力指数 机器学习 计算机视觉 模式识别(心理学) 财务 经济 管理
作者
Zhengkun Li,Changying Li,Patricio Muñoz
标识
DOI:10.13031/aim.202300883
摘要

Abstract. Accurately estimating blueberry yields is crucial for farmers aiming to optimize crop management practices and enhance agricultural profitability. However, the inherent challenges posed by blueberries growing in clusters and being frequently occluded by leaves or other fruits make direct counting of individual blueberries nearly impossible. Existing approaches rely on sampling a few plants or clusters to estimate yields based on expert knowledge or employ indirect regression analysis using yield-related features as inputs for predictive models. With recent advancements in deep learning technologies, there has been a growing interest in leveraging machine vision techniques to directly count fruits for yield estimation. In this paper, we propose a novel approach for blueberry yield estimation utilizing multi-view imagery in conjunction with the state-of-the-art YOLOv8 object detection framework. Our methodology involves a customized mobile platform equipped with a multi-camera sensing system that captures images of blueberry plants from three distinct views (top, left, and right) to ensure comprehensive coverage. We train a YOLOv8x model as the detector to accurately detect and localize individual blueberries within the images. Accounting for the overlapping information from the three views, we employ a regression model to estimate the total number of blueberries per plant. To evaluate the effectiveness of our approach, we compare single-view and multi-view methodologies and assess their estimation performance on 12 individual blueberry plants with varying genotypes. The multi-view imagery approach demonstrates promising results, exhibiting a mean absolute percentage error of 24.6% and an R2 value of 0.77. These figures represent a substantial improvement of 5.2% to 15.7% when compared to single-view approaches. Additionally, leveraging the predicted bounding boxes of blueberries, we are able to generate density maps that facilitate further phenotyping analysis. The methodology presented in this study holds significant potential for accurately and autonomously estimating blueberry fields, enabling the generation of high-resolution yield density maps, even at the individual plant level, with the aid of mobile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
10秒前
15秒前
祖之微笑发布了新的文献求助10
22秒前
简因完成签到 ,获得积分10
28秒前
英姑应助苹果果汁采纳,获得30
32秒前
kaka完成签到,获得积分10
41秒前
51秒前
Jason发布了新的文献求助10
57秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小乘号子发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
子平完成签到 ,获得积分0
1分钟前
科研通AI5应助哲别采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
小乘号子发布了新的文献求助10
2分钟前
2分钟前
Akim应助小乘号子采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yi完成签到,获得积分10
2分钟前
英俊的铭应助执着的草丛采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
slayers完成签到 ,获得积分20
3分钟前
Billy完成签到,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
SYLH应助Billy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
lascqy完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
优秀黑夜发布了新的文献求助10
4分钟前
Ava应助优秀黑夜采纳,获得10
4分钟前
冰留完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204771
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629