Confined Ionic‐Liquid‐Mediated Cation Diffusion through Layered Membranes for High‐Performance Osmotic Energy Conversion

离子液体 材料科学 化学工程 电解质 离子运输机 化学物理 离子键合 水化能 离子 扩散 润湿 石墨烯 氧化物 纳米技术 有机化学 化学 复合材料 热力学 物理化学 工程类 物理 催化作用 冶金 生物化学 电极
作者
Yuhao Hu,Hongyan Xiao,Lin Fu,Pei Liu,Yadong Wu,Weipeng Chen,Yongchao Qian,Shengyang Zhou,Xiang‐Yu Kong,Zhen Zhang,Lei Jiang,Liping Wen
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (24) 被引量:41
标识
DOI:10.1002/adma.202301285
摘要

Ion-selective membranes act as the core components in osmotic energy harvesting, but remain with deficiencies such as low ion selectivity and a tendency to swell. 2D nanofluidic membranes as competitive candidates are still subjected to limited mass transport brought by insufficient wetting and poor stability in water. Here, an ionic-liquid-infused graphene oxide (GO@IL) membrane with ultrafast ion transport ability is reported, and how the confined ionic liquid mediates selective cation diffusion is revealed. The infusion of ionic liquids endows the 2D membrane with excellent mechanical strength, anti-swelling properties, and good stability in aqueous electrolytes. Importantly, immiscible ionic liquids also provide a medium, allowing partial dehydration for ultrafast ion transport. Through molecular dynamics simulation and finite element modeling, that GO nanosheets induce ionic liquids to rearrange, bringing in additional space charges, which can be coupled with GO synergistically, is proved. By mixing 0.5/0.01 m NaCl solution, the power density can achieve a record value of ≈6.7 W m-2 , outperforming state-of-art GO-based membranes. This work opens up a new route for boosting nanofluidic energy conversion because of the diversity of the ILs and 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静一曲完成签到 ,获得积分10
刚刚
1秒前
完美世界应助嘎嘎顺利采纳,获得10
1秒前
崔靥完成签到,获得积分10
1秒前
2秒前
阿敏关注了科研通微信公众号
2秒前
一只绒可可完成签到,获得积分10
2秒前
CBY完成签到,获得积分10
2秒前
2秒前
QYPANG完成签到,获得积分10
3秒前
子时月完成签到,获得积分10
4秒前
脑洞疼应助xlx采纳,获得10
4秒前
jym完成签到,获得积分10
4秒前
4秒前
田様应助笑点低蜜蜂采纳,获得10
4秒前
今后应助乐观的一一采纳,获得10
5秒前
开朗向真完成签到,获得积分10
5秒前
5秒前
奋斗映寒发布了新的文献求助10
5秒前
梓榆发布了新的文献求助10
5秒前
帅气的沧海完成签到 ,获得积分10
5秒前
6秒前
FashionBoy应助包容的幻梅采纳,获得10
6秒前
6秒前
qaq完成签到,获得积分10
6秒前
6秒前
voyager完成签到,获得积分10
6秒前
勇敢肥猫发布了新的文献求助10
7秒前
YA发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
orixero应助玉yu采纳,获得10
8秒前
9秒前
sansan发布了新的文献求助10
9秒前
劉劉完成签到 ,获得积分10
10秒前
酷波er应助阳光的衫采纳,获得10
10秒前
火星上的菲鹰应助hkh采纳,获得10
10秒前
SciGPT应助Ll采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740