Accurate prediction of semiconductor bandgaps based on machine learning and prediction of bandgaps for two-dimensional heterojunctions

带隙 材料科学 半导体 宽禁带半导体 异质结 混合功能 工作(物理) 光电子学 机器学习 计算机科学 密度泛函理论 计算化学 热力学 物理 化学
作者
Huan Liu,Liang Xu,Zongle Ma,Zhengquan Li,Haotian Li,Ying Zhang,Bo Zhang,Lingling Wang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:36: 106578-106578 被引量:4
标识
DOI:10.1016/j.mtcomm.2023.106578
摘要

The bandgap value of materials has a profound impact on their properties and applications. Presently, with the development of high-throughput calculations, the bandgap of most materials is simulated and calculated using the density functional theory (DFT). Nevertheless, the bandgap of materials calculated in this way is often accompanied by large errors and long time consuming. Besides, the bandgap results obtained in different experimental environments are different. Therefore, finding a method to calculate the material bandgaps quickly and accurately is imminent. In this work, the Machine Learning (ML) method is used to predict the bandgap of semiconductor materials. Four different machine learning models are trained and tested through the feature processing, which can accurately predict the bandgap of the material by the hybrid density functional (HSE06) method, of which the average mean absolute error (MAE) is 0.142 eV and the coefficient of determination (R2) is 0.977. Moreover, in order to better predict the bandgap of local small-sample semiconductor materials, the federal learning framework is employed to forecast small-sample datasets under different experimental conditions. Then, the four ML models are used to the prediction of materials and compared the results with the local calculation results. The results indicate that the bandgap error of compound semiconductor materials is 2∼10%, and the bandgap error of 2D heterojunctions semiconductor materials is 5∼30%. In addition, the ML models are also utilized to the Materials Project database, in which the bandgap of about 53170 semiconductor materials is successfully predicted. In conclusion, the work not only provides a method to accurately predict the bandgap of compound semiconductor materials, but also supplies an effective idea for the prediction of the bandgap of semiconductor materials in local small data sets, which accelerating the development of the application of semiconductor materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犇骉应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
犇骉应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
亵渎发布了新的文献求助10
1秒前
还不错完成签到,获得积分10
2秒前
cjypdf完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
3秒前
3秒前
潇洒莞发布了新的文献求助10
4秒前
九龄发布了新的文献求助10
4秒前
4秒前
cjypdf发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
7秒前
8秒前
8秒前
许志伟完成签到,获得积分10
8秒前
8秒前
Positive发布了新的文献求助10
8秒前
刻苦的秋柔完成签到,获得积分10
9秒前
我是萨比完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Singularity应助lac采纳,获得10
10秒前
今天是颗大白菜完成签到,获得积分10
10秒前
Season完成签到,获得积分10
11秒前
初心发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659929
求助须知:如何正确求助?哪些是违规求助? 3221325
关于积分的说明 9739851
捐赠科研通 2930724
什么是DOI,文献DOI怎么找? 1604598
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734376