Artificial intelligence‐based reticulin proportionate area – a novel histological outcome predictor in hepatocellular carcinoma

肝细胞癌 医学 危险系数 比例危险模型 内科学 病态的 病理 转移 肿瘤科 胃肠病学 置信区间 癌症
作者
Ameya Patil,Rebecca Salvatori,Lindsey Smith,Sarah M. Jenkins,Andrew Cannon,Christopher Hartley,Rondell P. Graham,Roger K. Moreira
出处
期刊:Histopathology [Wiley]
卷期号:83 (4): 512-525 被引量:3
标识
DOI:10.1111/his.15001
摘要

Aims Reticulin stain is used routinely in the histological evaluation of hepatocellular carcinoma (HCC). The goal of this study was to assess whether the histological reticulin proportionate area (RPA) in HCCs predicts tumour‐related outcomes. Methods and results We developed and validated a supervised artificial intelligence (AI) model that utilises a cloud‐based, deep‐learning AI platform (Aiforia Technologies, Helsinki, Finland) to specifically recognise and quantify the reticulin framework in normal livers and HCCs using routine reticulin staining. We applied this reticulin AI model to a cohort of consecutive HCC cases from patients undergoing curative resection between 2005 and 2015. A total of 101 HCC resections were included (median age = 68 years, 64 males, median follow‐up time = 49.9 months). AI model RPA reduction of > 50% (compared to normal liver tissue) was predictive of metastasis [hazard ratio (HR) = 3.76, P = 0.004, disease‐free survival (DFS, HR = 2.48, P < 0.001) and overall survival (OS), HR = 2.80, P = 0.001]. In a Cox regression model, which included clinical and pathological variables, RPA decrease was an independent predictor of DFS and OS and the only independent predictor of metastasis. Similar results were found in the moderately differentiated HCC subgroup (WHO grade 2), in which reticulin quantitative analysis was an independent predictor of metastasis, DFS and OS. Conclusion Our data indicate that decreased RPA is a strong predictor of various HCC‐related outcomes, including within the moderately differentiated subgroup. Reticulin, therefore, may represent a novel and important prognostic HCC marker, to be further explored and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助nextconnie采纳,获得10
2秒前
James完成签到,获得积分10
2秒前
3秒前
Lucas应助sun采纳,获得10
4秒前
KristenStewart完成签到,获得积分10
6秒前
过时的热狗完成签到,获得积分10
6秒前
点点完成签到,获得积分10
6秒前
Zxc发布了新的文献求助10
7秒前
涨芝士完成签到 ,获得积分10
8秒前
9秒前
无名欧文关注了科研通微信公众号
9秒前
科研123完成签到,获得积分10
11秒前
crescent完成签到 ,获得积分10
13秒前
无奈傲菡发布了新的文献求助10
13秒前
烟花应助123号采纳,获得10
16秒前
超帅的遥完成签到,获得积分10
16秒前
Zxc完成签到,获得积分10
17秒前
lbt完成签到 ,获得积分10
18秒前
yao完成签到 ,获得积分10
19秒前
19秒前
21秒前
22秒前
22秒前
doudou完成签到 ,获得积分10
22秒前
BCS完成签到,获得积分10
22秒前
领导范儿应助KYN采纳,获得10
22秒前
23秒前
独特的莫言完成签到,获得积分10
25秒前
lin发布了新的文献求助10
26秒前
aero完成签到 ,获得积分10
28秒前
123号完成签到,获得积分10
30秒前
充电宝应助TT采纳,获得10
32秒前
33秒前
33秒前
英姑应助荒野星辰采纳,获得10
35秒前
35秒前
YHY完成签到,获得积分10
37秒前
科研通AI5应助魏伯安采纳,获得10
37秒前
caoyy发布了新的文献求助10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849