Double-Phase Adaptive Neural Network for Condition-Based Monitoring of p-GaN HEMT Under Repetitive Short-Circuit Stresses

高电子迁移率晶体管 人工神经网络 晶体管 计算机科学 可靠性(半导体) 氮化镓 功率(物理) 电气工程 拓扑(电路) 电子工程 电压 算法 材料科学 人工智能 物理 工程类 纳米技术 量子力学 图层(电子)
作者
Wenjuan Mei,Zhen Liu,Chaowu Pan,Ouhang Li,Yuanzhang Su,Qi Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3291001
摘要

Recently, p-GaN gate high electron mobility transistors (HEMTs) have emerged as competitive participants for next-generation high-performance power supply applications. However, the threshold voltage ( V th ) instability caused by short-circuit events jeopardizes the overall reliability of p-GaN gate HEMT and the power system in real applications. Hence, a noninvasive condition-based monitoring technique for critical device parameters is urgently required to enhance system safety without affecting the features of power electronic systems. In this paper, the threshold voltage instability dynamics of p-GaN gate HEMT under repetitive short stress were investigated to achieve high estimation accuracy and good monitoring efficiency. A double-phase adaptive neural network to predict the V th degradation kinetics based on the historical degradation recordings of the target device is developed. The degradation process contains a monotonous increasing process and an oscillation process divided by random changing point subject to Weibull distribution. Based on such characteristics, the extreme learning machines were combined with classic activation functions and periodic activation functions to predict the threshold voltage tendencies of p-GaN HEMTs under repetitive SC stress. The experiment results validate that the developed model based on static investigations can provide degradation predictions with high accuracies. Besides, the proposed method endows substantial benefits for the conditional-based monitoring problem of other newly emerging semiconductor devices that feature multiple scenarios during the dynamic process and differences between individual units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云岫完成签到 ,获得积分10
刚刚
NexusExplorer应助额尔其子采纳,获得10
刚刚
刚刚
来杯拿铁完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
七塔蹦完成签到,获得积分10
2秒前
wulilz完成签到,获得积分10
3秒前
属虎的华安完成签到,获得积分10
3秒前
3秒前
义气凝阳完成签到,获得积分10
4秒前
ChangYuGuan完成签到,获得积分10
4秒前
4秒前
Jasper应助大树采纳,获得10
5秒前
7秒前
一只小锅完成签到 ,获得积分10
7秒前
7秒前
8秒前
光风霁悦完成签到 ,获得积分10
8秒前
wing发布了新的文献求助30
8秒前
研友_LBaRl8完成签到,获得积分10
8秒前
可爱的函函应助wulilz采纳,获得10
8秒前
传奇3应助Lett采纳,获得30
9秒前
9秒前
李健应助adou采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
CipherSage应助芋泥采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
3927456843应助科研通管家采纳,获得20
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
ding应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096