Double-Phase Adaptive Neural Network for Condition-Based Monitoring of p-GaN HEMT Under Repetitive Short-Circuit Stresses

高电子迁移率晶体管 人工神经网络 晶体管 计算机科学 可靠性(半导体) 氮化镓 功率(物理) 电气工程 拓扑(电路) 电子工程 电压 算法 材料科学 人工智能 物理 工程类 纳米技术 量子力学 图层(电子)
作者
Wenjuan Mei,Zhen Liu,Chaowu Pan,Ouhang Li,Yuanzhang Su,Qi Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3291001
摘要

Recently, p-GaN gate high electron mobility transistors (HEMTs) have emerged as competitive participants for next-generation high-performance power supply applications. However, the threshold voltage ( V th ) instability caused by short-circuit events jeopardizes the overall reliability of p-GaN gate HEMT and the power system in real applications. Hence, a noninvasive condition-based monitoring technique for critical device parameters is urgently required to enhance system safety without affecting the features of power electronic systems. In this paper, the threshold voltage instability dynamics of p-GaN gate HEMT under repetitive short stress were investigated to achieve high estimation accuracy and good monitoring efficiency. A double-phase adaptive neural network to predict the V th degradation kinetics based on the historical degradation recordings of the target device is developed. The degradation process contains a monotonous increasing process and an oscillation process divided by random changing point subject to Weibull distribution. Based on such characteristics, the extreme learning machines were combined with classic activation functions and periodic activation functions to predict the threshold voltage tendencies of p-GaN HEMTs under repetitive SC stress. The experiment results validate that the developed model based on static investigations can provide degradation predictions with high accuracies. Besides, the proposed method endows substantial benefits for the conditional-based monitoring problem of other newly emerging semiconductor devices that feature multiple scenarios during the dynamic process and differences between individual units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈静怡发布了新的文献求助10
1秒前
YANGJIE6发布了新的文献求助10
3秒前
大伟还是文章读少了完成签到 ,获得积分10
3秒前
苏尔琳诺完成签到,获得积分10
4秒前
虚幻的夜天完成签到 ,获得积分10
5秒前
ll完成签到 ,获得积分10
5秒前
7秒前
8秒前
没有人歌颂完成签到,获得积分10
9秒前
10秒前
萧水白应助yuzhongdelianyi采纳,获得10
10秒前
步步完成签到 ,获得积分10
13秒前
shaoyu发布了新的文献求助10
13秒前
14秒前
klb13应助黄小强采纳,获得10
16秒前
19秒前
huanglihong发布了新的文献求助10
22秒前
23秒前
Zhu给Zhu的求助进行了留言
23秒前
24秒前
搜集达人应助YANGJIE6采纳,获得10
27秒前
28秒前
huanglihong完成签到,获得积分20
29秒前
领导范儿应助卡司采纳,获得10
29秒前
aa1718完成签到,获得积分20
29秒前
困困咪应助kuka007采纳,获得10
31秒前
梨小7完成签到,获得积分10
33秒前
共享精神应助Xppcjlan采纳,获得10
36秒前
pluto应助科研通管家采纳,获得50
37秒前
pluto应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
桐桐应助科研通管家采纳,获得10
37秒前
pluto应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
梨小7发布了新的文献求助10
39秒前
40秒前
sss完成签到,获得积分10
40秒前
彭于彦祖应助阿离采纳,获得30
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578