PseU-Pred: An ensemble model for accurate identification of pseudouridine sites

假尿苷 计算机科学 马修斯相关系数 集合预报 试验装置 人工智能 集成学习 计算生物学 生物信息学 机器学习 鉴定(生物学) 数据挖掘 核糖核酸 生物 尿苷 遗传学 支持向量机 基因 植物
作者
Muhammad Taseer Suleman,Yaser Daanial Khan
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:676: 115247-115247 被引量:1
标识
DOI:10.1016/j.ab.2023.115247
摘要

Pseudouridine (ψ) is reported to occur frequently in all types of RNA. This uridine modification has been shown to be essential for processes such as RNA stability and stress response. Also, it is linked to a few human diseases, such as prostate cancer, anemia, etc. A few laboratory techniques, such as Pseudo-seq and N3-CMC-enriched Pseudouridine sequencing (CeU-Seq) are used for detecting ψ sites. However, these are laborious and drawn-out methods. The convenience of sequencing data has enabled the development of computationally intelligent models for improving ψ site identification methods. The proposed work provides a prediction model for the identification of ψ sites through popular ensemble methods such as stacking, bagging, and boosting. Features were obtained through a novel feature extraction mechanism with the assimilation of statistical moments, which were used to train ensemble models. The cross-validation test and independent set test were used to evaluate the precision of the trained models. The proposed model outperformed the preexisting predictors and revealed 87% accuracy, 0.90 specificity, 0.85 sensitivity, and a 0.75 Matthews correlation coefficient. A web server has been built and is available publicly for the researchers at https://taseersuleman-y-test-pseu-pred-c2wmtj.streamlit.app/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liberty发布了新的文献求助10
刚刚
刚刚
tangcan完成签到,获得积分20
1秒前
852应助宋song采纳,获得10
1秒前
清新的代芹完成签到,获得积分10
1秒前
lingling发布了新的文献求助10
1秒前
如意芷蕾发布了新的文献求助10
1秒前
刘某发布了新的文献求助10
2秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zh应助科研通管家采纳,获得10
3秒前
zh应助科研通管家采纳,获得10
3秒前
zh应助科研通管家采纳,获得10
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201