PseU-Pred: An ensemble model for accurate identification of pseudouridine sites

假尿苷 计算机科学 马修斯相关系数 集合预报 试验装置 人工智能 集成学习 计算生物学 生物信息学 机器学习 鉴定(生物学) 数据挖掘 核糖核酸 生物 尿苷 遗传学 支持向量机 基因 植物
作者
Muhammad Taseer Suleman,Yaser Daanial Khan
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:676: 115247-115247 被引量:1
标识
DOI:10.1016/j.ab.2023.115247
摘要

Pseudouridine (ψ) is reported to occur frequently in all types of RNA. This uridine modification has been shown to be essential for processes such as RNA stability and stress response. Also, it is linked to a few human diseases, such as prostate cancer, anemia, etc. A few laboratory techniques, such as Pseudo-seq and N3-CMC-enriched Pseudouridine sequencing (CeU-Seq) are used for detecting ψ sites. However, these are laborious and drawn-out methods. The convenience of sequencing data has enabled the development of computationally intelligent models for improving ψ site identification methods. The proposed work provides a prediction model for the identification of ψ sites through popular ensemble methods such as stacking, bagging, and boosting. Features were obtained through a novel feature extraction mechanism with the assimilation of statistical moments, which were used to train ensemble models. The cross-validation test and independent set test were used to evaluate the precision of the trained models. The proposed model outperformed the preexisting predictors and revealed 87% accuracy, 0.90 specificity, 0.85 sensitivity, and a 0.75 Matthews correlation coefficient. A web server has been built and is available publicly for the researchers at https://taseersuleman-y-test-pseu-pred-c2wmtj.streamlit.app/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海一刀完成签到,获得积分10
刚刚
werm完成签到,获得积分10
刚刚
刚刚
非洲三巨头完成签到,获得积分10
1秒前
周浩宇发布了新的文献求助10
1秒前
是一颗大树呀完成签到,获得积分10
2秒前
研友_R2D2完成签到,获得积分10
2秒前
Cream萱发布了新的文献求助10
3秒前
Qingyong21应助千尺焰采纳,获得10
3秒前
ice发布了新的文献求助10
4秒前
5秒前
5秒前
Ty_1029发布了新的文献求助10
5秒前
FashionBoy应助非洲三巨头采纳,获得10
6秒前
6秒前
A晨发布了新的文献求助10
8秒前
9秒前
CCUT-LX发布了新的文献求助10
9秒前
江风发布了新的文献求助10
9秒前
10秒前
Judy完成签到 ,获得积分10
11秒前
11秒前
姜大头完成签到,获得积分10
12秒前
ws完成签到,获得积分10
13秒前
avoidant发布了新的文献求助10
13秒前
13秒前
Atopos发布了新的文献求助10
14秒前
14秒前
zhaimen完成签到 ,获得积分10
14秒前
14秒前
16秒前
lay发布了新的文献求助10
16秒前
17秒前
ws发布了新的文献求助30
17秒前
18秒前
19秒前
20秒前
nanxi88完成签到,获得积分10
20秒前
orixero应助小小采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721