PseU-Pred: An ensemble model for accurate identification of pseudouridine sites

假尿苷 计算机科学 马修斯相关系数 集合预报 试验装置 人工智能 集成学习 计算生物学 生物信息学 机器学习 鉴定(生物学) 数据挖掘 核糖核酸 生物 尿苷 遗传学 支持向量机 基因 植物
作者
Muhammad Taseer Suleman,Yaser Daanial Khan
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:676: 115247-115247 被引量:1
标识
DOI:10.1016/j.ab.2023.115247
摘要

Pseudouridine (ψ) is reported to occur frequently in all types of RNA. This uridine modification has been shown to be essential for processes such as RNA stability and stress response. Also, it is linked to a few human diseases, such as prostate cancer, anemia, etc. A few laboratory techniques, such as Pseudo-seq and N3-CMC-enriched Pseudouridine sequencing (CeU-Seq) are used for detecting ψ sites. However, these are laborious and drawn-out methods. The convenience of sequencing data has enabled the development of computationally intelligent models for improving ψ site identification methods. The proposed work provides a prediction model for the identification of ψ sites through popular ensemble methods such as stacking, bagging, and boosting. Features were obtained through a novel feature extraction mechanism with the assimilation of statistical moments, which were used to train ensemble models. The cross-validation test and independent set test were used to evaluate the precision of the trained models. The proposed model outperformed the preexisting predictors and revealed 87% accuracy, 0.90 specificity, 0.85 sensitivity, and a 0.75 Matthews correlation coefficient. A web server has been built and is available publicly for the researchers at https://taseersuleman-y-test-pseu-pred-c2wmtj.streamlit.app/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
perdgs完成签到,获得积分10
1秒前
CodeCraft应助从容的方盒采纳,获得10
2秒前
虚幻靖易完成签到,获得积分10
2秒前
3秒前
巫马尔槐完成签到,获得积分10
3秒前
sen驳回了Zx_1993应助
3秒前
落后丸子完成签到,获得积分10
4秒前
许诺完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
7秒前
oldhope发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
Kiry完成签到 ,获得积分10
9秒前
书是人类进步的阶梯完成签到 ,获得积分10
9秒前
pangguanzhe发布了新的文献求助10
11秒前
11秒前
pengivy完成签到,获得积分10
12秒前
哈利波特完成签到,获得积分10
13秒前
丘比特应助miao采纳,获得10
14秒前
羽羊周周完成签到,获得积分20
14秒前
14秒前
华盛顿关注了科研通微信公众号
14秒前
科研通AI6应助lankeren采纳,获得10
16秒前
时迁完成签到 ,获得积分10
17秒前
17秒前
领导范儿应助胡萝卜叶子采纳,获得10
17秒前
wanci应助害羞的诺言采纳,获得10
18秒前
20秒前
kate完成签到,获得积分10
21秒前
ECHO发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
朱春阳发布了新的文献求助10
25秒前
25秒前
moon发布了新的文献求助30
26秒前
BowieHuang应助从容的方盒采纳,获得10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241