Vehicle Detection Based on Information Fusion of mmWave Radar and Monocular Vision

计算机科学 数据库扫描 稳健性(进化) 人工智能 计算机视觉 雷达 聚类分析 传感器融合 点云 保险丝(电气) 遥感 工程类 模糊聚类 地理 电信 生物化学 化学 树冠聚类算法 电气工程 基因
作者
Guizhong Cai,Xianpeng Wang,Jinmei Shi,Xiang Lan,Ting Su,Yuehao Guo
出处
期刊:Electronics [MDPI AG]
卷期号:12 (13): 2840-2840
标识
DOI:10.3390/electronics12132840
摘要

Single sensors often fail to meet the needs of practical applications due to their lack of robustness and poor detection accuracy in harsh weather and complex environments. A vehicle detection method based on the fusion of millimeter wave (mmWave) radar and monocular vision was proposed to solve this problem in this paper. The method successfully combines the benefits of mmWave radar for measuring distance and speed with the vision for classifying objects. Firstly, the raw point cloud data of mmWave radar can be processed by the proposed data pre-processing algorithm to obtain 3D detection points with higher confidence. Next, the density-based spatial clustering of applications with noise (DBSCAN) clustering fusion algorithm and the nearest neighbor algorithm were also used to correlate the same frame data and adjacent frame data, respectively. Then, the effective targets from mmWave radar and vision were matched under temporal-spatio alignment. In addition, the successfully matched targets were output by using the Kalman weighted fusion algorithm. Targets that were not successfully matched were marked as new targets for tracking and handled in a valid cycle. Finally, experiments demonstrated that the proposed method can improve target localization and detection accuracy, reduce missed detection occurrences, and efficiently fuse the data from the two sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助从容的白容采纳,获得10
1秒前
1秒前
hyeseongu发布了新的文献求助50
1秒前
carpsz完成签到,获得积分10
1秒前
沉静的熊猫完成签到,获得积分10
2秒前
潇潇完成签到 ,获得积分10
2秒前
Hannah17完成签到,获得积分20
2秒前
穆紫应助qqq采纳,获得10
3秒前
4秒前
研友_nxVrd8发布了新的文献求助10
4秒前
自然发布了新的文献求助10
4秒前
4秒前
Carmen完成签到,获得积分10
4秒前
5秒前
LZHWSND发布了新的文献求助10
5秒前
carpsz发布了新的文献求助10
5秒前
Hannah17发布了新的文献求助10
5秒前
6秒前
6秒前
这里不是火星完成签到,获得积分10
7秒前
7秒前
Carmen发布了新的文献求助30
7秒前
9秒前
10秒前
11秒前
12秒前
benxin发布了新的文献求助10
12秒前
猪猪完成签到,获得积分10
12秒前
13秒前
科研通AI2S应助微笑的寒梦采纳,获得10
14秒前
15秒前
科研通AI2S应助猪猪采纳,获得10
17秒前
17秒前
benxin完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
穆紫应助小黄鸭采纳,获得10
20秒前
打打应助paper快来采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328