Fire Detection in Ship Engine Rooms Based on Deep Learning

火灾探测 计算机科学 任务(项目管理) 深度学习 特征(语言学) 机舱 特征提取 人工智能 工程类 模拟 汽车工程 建筑工程 系统工程 机械工程 语言学 哲学
作者
Jinting Zhu,Jundong Zhang,Yongkang Wong,Yuequn Ge,Ziwei Zhang,Shihan Zhang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (14): 6552-6552 被引量:7
标识
DOI:10.3390/s23146552
摘要

Ship fires are one of the main factors that endanger the safety of ships; because the ship is far away from land, the fire can be difficult to extinguish and could often cause huge losses. The engine room has many pieces of equipment and is the principal place of fire; however, due to its complex internal environment, it can bring many difficulties to the task of fire detection. The traditional detection methods have their own limitations, but fire detection using deep learning technology has the characteristics of high detection speed and accuracy. In this paper, we improve the YOLOv7-tiny model to enhance its detection performance. Firstly, partial convolution (PConv) and coordinate attention (CA) mechanisms are introduced into the model to improve its detection speed and feature extraction ability. Then, SIoU is used as a loss function to accelerate the model's convergence and improve accuracy. Finally, the experimental results on the dataset of the ship engine room fire made by us shows that the mAP@0.5 of the improved model is increased by 2.6%, and the speed is increased by 10 fps, which can meet the needs of engine room fire detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动的怜菡完成签到,获得积分10
1秒前
wuxiao完成签到,获得积分10
1秒前
Alberat完成签到,获得积分10
1秒前
细腻的惜梦完成签到,获得积分10
1秒前
1秒前
万能图书馆应助123采纳,获得10
2秒前
2秒前
爱吃橙子完成签到 ,获得积分10
2秒前
噜噜噜完成签到,获得积分10
2秒前
2秒前
月是故乡明完成签到,获得积分10
3秒前
柳叶完成签到,获得积分10
4秒前
4秒前
han发布了新的文献求助10
4秒前
zzzllove发布了新的文献求助10
4秒前
4秒前
Ziang_Liu完成签到,获得积分10
5秒前
Daisy发布了新的文献求助10
5秒前
SciGPT应助ceeray23采纳,获得20
5秒前
赘婿应助在和采纳,获得10
6秒前
weifengzhong完成签到,获得积分10
7秒前
djh完成签到,获得积分0
7秒前
7秒前
负责紊完成签到,获得积分10
7秒前
聪123完成签到,获得积分10
7秒前
Jasper应助YM采纳,获得10
7秒前
8秒前
8秒前
8秒前
小晖晖完成签到,获得积分10
8秒前
白兔完成签到,获得积分10
8秒前
Foch完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
金咪发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
spencer177完成签到,获得积分10
10秒前
眼睛大忆曼完成签到,获得积分10
10秒前
zzzllove完成签到,获得积分10
10秒前
Zarc完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997