Role of Shapley Additive Explanations and Resampling Algorithms for Contract Failure Prediction of Public–Private Partnership Projects

可解释性 采购 普通合伙企业 重采样 机器学习 公私合营 支持向量机 计算机科学 算法 私营部门 过采样 特征(语言学) 人工智能 经济 财务 业务 营销 哲学 经济增长 语言学 带宽(计算) 计算机网络
作者
Kerim Koç
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:39 (5) 被引量:3
标识
DOI:10.1061/jmenea.meeng-5492
摘要

A public–private partnership (PPP) is a common procurement model implemented worldwide as a catalyst for economic growth and improved public infrastructure. However, due to their inherent characteristics, the risk of failure in some PPP projects is high, causing heavy losses to both entities. Despite distinctive progress being made in PPP projects to reduce their failure probability, there is no proper and effective framework to predict PPP project failure in advance in either developing or in developed countries. The present study aims to develop a machine learning (ML) model to predict the failure of PPP projects to prosper in adverse conditions. This research addresses two critical issues, i.e., class imbalance and interpretability of ML models, that differentiate the current study from data-driven studies to date. First, existing studies usually focused on comparing and selecting the most adequate ML methods, but this study distinctively compared the performances of nine data resampling algorithms. Besides, in order to enhance the interpretability and visibility of the proposed model, a game theory–based feature investigation algorithm, Shapley additive explanations (SHAP), was used to identify not only the most significant features, but also the conditions of the features that cause failure or success in PPP projects. The findings illustrate that the proposed model yielded the highest prediction performance once the data set was resampled with the support vector machine-synthetic minority oversampling technique (SVM-SMOTE). SHAP analysis further shows that unsolicited proposals, domestic credit to the private sector, and project type/subtype have significant impacts on the prediction rationale. Overall, this study contributes to theory through incorporating resampling methods and SHAP algorithm into ML models as well as to practice with an advanced and reliable model to predict the status of PPP projects. The data-driven model and findings are expected to respond to current policy and industry needs by proposing a robust decision-making input for detecting risky PPP projects, allocating resources more effectively based on the most critical failure factors, and promoting the transparency of PPP project outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助i好运采纳,获得10
1秒前
李健应助sweet采纳,获得10
1秒前
情怀应助materials_采纳,获得10
1秒前
tsuki发布了新的文献求助10
1秒前
科研通AI5应助yusheng采纳,获得10
1秒前
HPP123完成签到,获得积分10
2秒前
彪壮的小蝴蝶完成签到,获得积分10
2秒前
3秒前
kx发布了新的文献求助10
3秒前
打打应助研新采纳,获得10
4秒前
痞老板发布了新的文献求助10
4秒前
llIIiiIIiill发布了新的文献求助10
4秒前
科目三应助gyx采纳,获得10
4秒前
李爱国应助岁月轮回采纳,获得10
4秒前
6秒前
6秒前
Ava应助zhalc采纳,获得10
6秒前
稳重的山槐完成签到,获得积分10
7秒前
Lucas应助mumeinv采纳,获得10
7秒前
7秒前
bobo完成签到,获得积分10
7秒前
crde完成签到 ,获得积分10
8秒前
8秒前
yyyyyy应助芹菜煎蛋采纳,获得10
9秒前
hakureiyoru发布了新的文献求助10
9秒前
常青完成签到,获得积分10
9秒前
szs完成签到,获得积分10
10秒前
JamesPei应助阔达犀牛采纳,获得10
11秒前
wwww1发布了新的文献求助10
11秒前
晨凌夜影完成签到,获得积分10
11秒前
11秒前
12秒前
十一发布了新的文献求助10
12秒前
wangzhao发布了新的文献求助10
12秒前
daididexhl完成签到,获得积分10
12秒前
王胖发布了新的文献求助10
12秒前
sweet发布了新的文献求助10
13秒前
烟花应助LDDD采纳,获得10
14秒前
科研通AI5应助llIIiiIIiill采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195