A New Semantic Segmentation Method for Remote Sensing Images Integrating Coordinate Attention and SPD-Conv

计算机科学 分割 人工智能 联营 模式识别(心理学) 棱锥(几何) 图像分割 卷积(计算机科学) 尺度空间分割 计算机视觉 人工神经网络 数学 几何学
作者
Zimeng Yang,Qiulan Wu,Feng Zhang,Xueshen Zhang,Xuefei Chen,Yue Gao
出处
期刊:Symmetry [MDPI AG]
卷期号:15 (5): 1037-1037 被引量:9
标识
DOI:10.3390/sym15051037
摘要

Semantic segmentation is an important task for the interpretation of remote sensing images. Remote sensing images are large in size, contain substantial spatial semantic information, and generally exhibit strong symmetry, resulting in images exhibiting large intraclass variance and small interclass variance, thus leading to class imbalance and poor small-object segmentation. In this paper, we propose a new remote sensing image semantic segmentation network, called CAS-Net, which includes coordinate attention (CA) and SPD-Conv. In the model, we replace stepwise convolution with SPD-Conv convolution in the feature extraction network and add a pooling layer into the network to avoid the loss of detailed information, effectively improving the segmentation of small objects. The CA is introduced into the atrous spatial pyramid pooling (ASPP) module, thus improving the recognizability of classified objects and target localization accuracy in remote sensing images. Finally, the Dice coefficient was introduced into the cross-entropy loss function to maximize the gradient optimization of the model and solve the classification imbalance problem in the image. The proposed model is compared with several state-of-the-art models on the ISPRS Vaihingen dataset. The experimental results demonstrate that the proposed model significantly optimizes the segmentation effect of small objects in remote sensing images, effectively solves the problem of class imbalance in the dataset, and improves segmentation accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
选波发布了新的文献求助10
刚刚
1秒前
1秒前
Ava应助霸道恒天采纳,获得10
1秒前
科研通AI6应助霸道恒天采纳,获得10
1秒前
传奇3应助霸道恒天采纳,获得10
1秒前
科研通AI6应助霸道恒天采纳,获得10
1秒前
Lucas应助霸道恒天采纳,获得10
1秒前
CipherSage应助霸道恒天采纳,获得10
2秒前
慕青应助霸道恒天采纳,获得10
2秒前
赘婿应助霸道恒天采纳,获得10
2秒前
英姑应助霸道恒天采纳,获得10
2秒前
延胡索发布了新的文献求助10
2秒前
2秒前
kckckckckc完成签到 ,获得积分10
3秒前
Owen应助忧郁寻冬采纳,获得10
4秒前
热心玉兰发布了新的文献求助10
5秒前
割牙龈肉发布了新的文献求助10
6秒前
李李李发布了新的文献求助10
7秒前
浮游应助anwen采纳,获得10
8秒前
斯文败类应助壮壮采纳,获得10
8秒前
Rain应助Wang采纳,获得10
10秒前
11秒前
脑洞疼应助开放青旋采纳,获得30
11秒前
Lucas应助长情胡萝卜采纳,获得30
12秒前
热心玉兰完成签到,获得积分10
13秒前
13秒前
真真发布了新的文献求助10
13秒前
13秒前
共享精神应助小分队采纳,获得10
13秒前
15秒前
高大的冰双完成签到,获得积分10
15秒前
zzm完成签到,获得积分10
15秒前
刚国忠发布了新的文献求助10
15秒前
16秒前
16秒前
yxy完成签到,获得积分10
16秒前
Owen应助芋泥桃桃采纳,获得10
16秒前
17秒前
蝉鸣一夏发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336