Prescriptive analytics for a maritime routing problem

计算机科学 可扩展性 布线(电子设计自动化) 过程(计算) 端口(电路理论) 运筹学 噪音(视频) 数学优化 人工智能 工程类 计算机网络 数学 数据库 操作系统 图像(数学) 电气工程
作者
Xuecheng Tian,Ran Yan,Shuaian Wang,Gilbert Laporte
标识
DOI:10.1016/j.ocecoaman.2023.106695
摘要

Port state control (PSC) serves as the final defense against substandard ships in maritime transportation. The port state control officer (PSCO) routing problem involves selecting ships for inspection and determining the inspection sequence for available PSCOs, aiming to identify the highest number of deficiencies. Port authorities face this problem daily, making decisions without prior knowledge of ship conditions. Traditionally, a predict-then-optimize framework is employed, but its machine learning (ML) models' loss function fails to account for the impact of predictions on the downstream optimization problem, potentially resulting in suboptimal decisions. We adopt a decision-focused learning framework, integrating the PSCO routing problem into the ML models' training process. However, as the PSCO routing problem is NP-hard and plugging it into the training process of ML models requires that it be solved numerous times, computational complexity and scalability present significant challenges. To address these issues, we first convert the PSCO routing problem into a compact model using undominated inspection templates, enhancing the model's solution efficiency. Next, we employ a family of surrogate loss functions based on noise-contrastive estimation (NCE) for the ML model, requiring a solution pool treating suboptimal solutions as noise samples. This pool represents a convex hull of feasible solutions, avoiding frequent reoptimizations during the ML model's training process. Through computational experiments, we compare the predictive and prescriptive qualities of both the two-stage framework and the decision-focused learning framework under varying instance sizes. Our findings suggest that accurate predictions do not guarantee good decisions; the decision-focused learning framework's performance may depend on the optimization problem size and the training dataset size; and using a solution pool containing noise samples strikes a balance between training efficiency and decision performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助Charail采纳,获得10
2秒前
2秒前
hello发布了新的文献求助10
3秒前
4秒前
Wht发布了新的文献求助10
7秒前
7秒前
7秒前
Zzzhu发布了新的文献求助20
8秒前
含蓄的鹤完成签到 ,获得积分10
10秒前
天真的邴发布了新的文献求助10
12秒前
dzz完成签到,获得积分20
14秒前
15秒前
弱水完成签到,获得积分10
15秒前
科研通AI2S应助滾滾采纳,获得10
16秒前
小马甲应助Rouadou采纳,获得30
16秒前
lalala发布了新的文献求助10
19秒前
20秒前
22秒前
神勇的薯片完成签到,获得积分10
25秒前
26秒前
27秒前
充电宝应助欢呼的寻双采纳,获得10
27秒前
27秒前
27秒前
29秒前
LinglongCai完成签到 ,获得积分10
30秒前
王启蛰完成签到,获得积分10
30秒前
123发布了新的文献求助10
31秒前
Ru发布了新的文献求助30
31秒前
31秒前
Eric_Z发布了新的文献求助10
31秒前
科研通AI2S应助Ren采纳,获得10
32秒前
ss完成签到 ,获得积分10
32秒前
34秒前
阿涵完成签到,获得积分20
34秒前
36秒前
叁少关注了科研通微信公众号
36秒前
xxx完成签到,获得积分10
36秒前
鱼鱼完成签到 ,获得积分10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149259
求助须知:如何正确求助?哪些是违规求助? 2800349
关于积分的说明 7839651
捐赠科研通 2457913
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706