Prescriptive analytics for a maritime routing problem

计算机科学 可扩展性 布线(电子设计自动化) 过程(计算) 端口(电路理论) 运筹学 噪音(视频) 数学优化 人工智能 工程类 计算机网络 数学 数据库 电气工程 图像(数学) 操作系统
作者
Xuecheng Tian,Ran Yan,Shuaian Wang,Gilbert Laporte
标识
DOI:10.1016/j.ocecoaman.2023.106695
摘要

Port state control (PSC) serves as the final defense against substandard ships in maritime transportation. The port state control officer (PSCO) routing problem involves selecting ships for inspection and determining the inspection sequence for available PSCOs, aiming to identify the highest number of deficiencies. Port authorities face this problem daily, making decisions without prior knowledge of ship conditions. Traditionally, a predict-then-optimize framework is employed, but its machine learning (ML) models' loss function fails to account for the impact of predictions on the downstream optimization problem, potentially resulting in suboptimal decisions. We adopt a decision-focused learning framework, integrating the PSCO routing problem into the ML models' training process. However, as the PSCO routing problem is NP-hard and plugging it into the training process of ML models requires that it be solved numerous times, computational complexity and scalability present significant challenges. To address these issues, we first convert the PSCO routing problem into a compact model using undominated inspection templates, enhancing the model's solution efficiency. Next, we employ a family of surrogate loss functions based on noise-contrastive estimation (NCE) for the ML model, requiring a solution pool treating suboptimal solutions as noise samples. This pool represents a convex hull of feasible solutions, avoiding frequent reoptimizations during the ML model's training process. Through computational experiments, we compare the predictive and prescriptive qualities of both the two-stage framework and the decision-focused learning framework under varying instance sizes. Our findings suggest that accurate predictions do not guarantee good decisions; the decision-focused learning framework's performance may depend on the optimization problem size and the training dataset size; and using a solution pool containing noise samples strikes a balance between training efficiency and decision performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵丹发布了新的文献求助10
1秒前
Jundy完成签到,获得积分10
1秒前
李白完成签到,获得积分10
1秒前
1秒前
彩色蘑菇完成签到,获得积分10
1秒前
2秒前
2秒前
SYLH应助lqkcqmu采纳,获得30
2秒前
3秒前
TANG完成签到,获得积分10
3秒前
4秒前
pm完成签到,获得积分20
4秒前
热情铭发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Jenaloe发布了新的文献求助10
6秒前
自然1111发布了新的文献求助10
6秒前
李健的小迷弟应助哈士轩采纳,获得10
6秒前
6秒前
6秒前
Akim应助怡然嚣采纳,获得30
7秒前
顾矜应助xuexi采纳,获得10
7秒前
lone623发布了新的文献求助10
7秒前
mrz发布了新的文献求助10
7秒前
yx_cheng应助OK采纳,获得30
7秒前
8秒前
菜鸟12完成签到,获得积分20
8秒前
8秒前
20250702完成签到 ,获得积分10
8秒前
夕照古风发布了新的文献求助10
8秒前
单薄的夜南应助wangyalei采纳,获得10
8秒前
打败拖延症完成签到,获得积分10
9秒前
苹果蜗牛发布了新的文献求助10
9秒前
10秒前
Ultraman完成签到,获得积分10
10秒前
王宁发布了新的文献求助10
10秒前
十四完成签到 ,获得积分10
11秒前
LLL发布了新的文献求助10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620