Prescriptive analytics for a maritime routing problem

计算机科学 可扩展性 布线(电子设计自动化) 过程(计算) 端口(电路理论) 运筹学 噪音(视频) 数学优化 人工智能 工程类 计算机网络 数学 数据库 电气工程 图像(数学) 操作系统
作者
Xuecheng Tian,Ran Yan,Shuaian Wang,Gilbert Laporte
标识
DOI:10.1016/j.ocecoaman.2023.106695
摘要

Port state control (PSC) serves as the final defense against substandard ships in maritime transportation. The port state control officer (PSCO) routing problem involves selecting ships for inspection and determining the inspection sequence for available PSCOs, aiming to identify the highest number of deficiencies. Port authorities face this problem daily, making decisions without prior knowledge of ship conditions. Traditionally, a predict-then-optimize framework is employed, but its machine learning (ML) models' loss function fails to account for the impact of predictions on the downstream optimization problem, potentially resulting in suboptimal decisions. We adopt a decision-focused learning framework, integrating the PSCO routing problem into the ML models' training process. However, as the PSCO routing problem is NP-hard and plugging it into the training process of ML models requires that it be solved numerous times, computational complexity and scalability present significant challenges. To address these issues, we first convert the PSCO routing problem into a compact model using undominated inspection templates, enhancing the model's solution efficiency. Next, we employ a family of surrogate loss functions based on noise-contrastive estimation (NCE) for the ML model, requiring a solution pool treating suboptimal solutions as noise samples. This pool represents a convex hull of feasible solutions, avoiding frequent reoptimizations during the ML model's training process. Through computational experiments, we compare the predictive and prescriptive qualities of both the two-stage framework and the decision-focused learning framework under varying instance sizes. Our findings suggest that accurate predictions do not guarantee good decisions; the decision-focused learning framework's performance may depend on the optimization problem size and the training dataset size; and using a solution pool containing noise samples strikes a balance between training efficiency and decision performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪草丛发布了新的文献求助20
刚刚
小哈完成签到 ,获得积分10
2秒前
酷酷云朵发布了新的文献求助10
2秒前
比奇堡不想上班派大星完成签到 ,获得积分10
3秒前
背后的雪卉应助冥土采纳,获得10
4秒前
4秒前
zho应助琳666采纳,获得10
5秒前
6秒前
Zr完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
维奈克拉应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得100
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
子车茗应助科研通管家采纳,获得100
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得30
7秒前
维奈克拉应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
南小木完成签到,获得积分20
8秒前
9秒前
上官若男应助Nell采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343