有界函数
扩散
零(语言学)
吸引力
极限(数学)
非线性系统
衍生工具(金融)
初值问题
价值(数学)
数学物理
数学
数学分析
物理
热力学
量子力学
经济
金融经济学
统计
心理学
语言学
哲学
精神分析
标识
DOI:10.1016/j.nonrwa.2023.103946
摘要
This paper deals with a one-dimensional cross-diffusion system ut=(D(u)ux)x−χ(uvvx)x−uv+B1(x,t),x∈Ω,t>0,vt=vxx−v+uv+B2(x,t),x∈Ω,t>0,which is proposed by Short et al. (2008) to describe the dynamics of urban crime. If D(u)≥D0(u+1)m−1 with D0,m>0, it is proved for arbitrary χ>0 that the system possesses a globally bounded classical solution provided m>14 with some mild assumptions on nonnegative functions B1,B2. In addition, if B2≡0, the attractiveness value of v and its derivative vx decay to zero in the long time limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI