碳足迹
温室气体
减缓气候变化
气候变化
持续性
文件夹
环境科学
成本效益分析
利比里亚元
自然资源经济学
环境资源管理
环境经济学
业务
经济
财务
生态学
生物
作者
Parichehr Salimifard,Marissa V. Rainbolt,Jonathan J. Buonocore,Mahala Lahvis,Brian Sousa,Joseph G. Allen
标识
DOI:10.1016/j.buildenv.2023.110618
摘要
Building energy use represents a major challenge toward achieving our climate goals. Energy and carbon emissions from buildings are routinely measured, but reducing carbon emissions also comes with significant health and climate co-benefits that are rarely quantified, and, if they are, only retrospectively. We developed the Co-benefits of Built Environment (CoBE) Projection tool to project the health and climate co-benefits of energy savings and emissions reductions in buildings up to 2050. CoBE uses energy and emissions data from the U.S. Energy Information Administration and Environmental Protection Agency as well as social cost of carbon to quantify the climate impacts, and reduced complexity models (InMAP, EASIUR, and AP2) to quantify the health impacts in terms of premature mortality cases attributable to PM2.5 exposure and their associated monetized health costs. Projections for year 2050 show for every dollar of electricity savings, health and climate co-benefits add $0.02-$0.81 of additional savings, with highest co-benefits occurring in Wisconsin and Michigan, while lowest in California across projected years in 2018–2050. CoBE Projection can aid stakeholders and decision-makers in (1) assessing current individual building or building portfolio performance by quantifying emissions, health, and climate footprint; and (2) evaluating their sustainability plans by comparing the projected co-benefits under different energy conservation scenarios, to achieve highest health and climate co-benefits.
科研通智能强力驱动
Strongly Powered by AbleSci AI