亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Principal Component-Based Semi-Supervised Extreme Learning Machine for Soft Sensing

人工智能 计算机科学 机器学习 概括性 主成分分析 软传感器 灵活性(工程) 特征(语言学) 极限学习机 监督学习 代表(政治) 利用 半监督学习 特征提取 模式识别(心理学) 数据挖掘 人工神经网络 过程(计算) 数学 心理学 语言学 统计 哲学 计算机安全 政治 政治学 法学 心理治疗师 操作系统
作者
XuDong Shi,Qi Kang,HanQiu Bao,Wangya Huang,Jing An
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3966-3976 被引量:12
标识
DOI:10.1109/tase.2023.3290352
摘要

Soft sensing technique has been extensively used to predict key quality variables in industrial systems. However, due to the difficulty of quality variable acquisition, only limited labeled data samples are available, and a large number of unlabeled ones are discarded. This raises a big challenge to build a high-quality soft sensor model. In order to furthest exploit information contained in both the labeled and unlabeled data, this paper proposes a principal component-based semi-supervised extreme learning machine (referred to as PCSELM) model. Through this model, extracting latent features and learning nonlinear input-output relationship can be simultaneously performed. In this way, unlabeled samples are utilized efficiently for feature representation and model accuracy improvement. Moreover, mixed regularizations are employed to work in conjunction with the PCSELM to obtain high generality and flexibility. We also derive an efficient parameter learning algorithm with theoretically guaranteed convergence. Comprehensive experiments are conducted via an industrial process. Comparison results illustrate that the proposed PCSELM outperforms other representative semi-supervised algorithms. Note to Practitioners —Industrial processes in general incorporate unlabeled samples which are ubiquitous in real world applications. The focus of this paper is to develop a semi-supervised soft sensor model (PCSELM) that is capable to learn the nonlinear features and regression relationship efficiently with both the labeled and unlabeled samples. The proposed model can automatically implement the feature representation and the input-output relationship description. In addition, we introduce mixed norms for the model objective function to improve the final prediction performance and generalization. A feasible model optimization technique with proved convergence is also derived. Experimental results based on a real industrial dataset manifest that PCSELM achieves better prediction accuracy than its peers.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴曼寒完成签到,获得积分10
23秒前
完美世界应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
0911wxt发布了新的文献求助10
2分钟前
0911wxt完成签到,获得积分10
2分钟前
2分钟前
3分钟前
俭朴的红牛完成签到,获得积分10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
3分钟前
惊蛰完成签到,获得积分10
5分钟前
调研昵称发布了新的文献求助10
5分钟前
l老王完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Chris完成签到 ,获得积分0
8分钟前
9分钟前
llewis完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
10分钟前
10分钟前
调研昵称发布了新的文献求助10
10分钟前
调研昵称发布了新的文献求助10
10分钟前
fransiccarey完成签到,获得积分10
10分钟前
模糊中正应助gao0505采纳,获得10
10分钟前
星流xx完成签到 ,获得积分10
10分钟前
10分钟前
infboy发布了新的文献求助10
11分钟前
科研通AI2S应助年轻的飞风采纳,获得10
11分钟前
加菲丰丰应助年轻的飞风采纳,获得10
11分钟前
传奇3应助年轻的飞风采纳,获得10
11分钟前
infboy完成签到,获得积分10
11分钟前
秋小阳桑完成签到,获得积分10
11分钟前
jwq完成签到,获得积分10
11分钟前
年轻的飞风完成签到,获得积分10
11分钟前
11分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376851
求助须知:如何正确求助?哪些是违规求助? 2992962
关于积分的说明 8752834
捐赠科研通 2677311
什么是DOI,文献DOI怎么找? 1466571
科研通“疑难数据库(出版商)”最低求助积分说明 678385
邀请新用户注册赠送积分活动 669930