Evidence Reasoning and Curriculum Learning for Document-level Relation Extraction

关系抽取 计算机科学 关系(数据库) 判决 人工智能 任务(项目管理) 自然语言处理 信息抽取 强化学习 情报检索 数据挖掘 经济 管理
作者
Tianyu Xu,Jianfeng Qu,Wen Hua,Zhixu Li,Jiajie Xu,An Liu,Lei Zhao,Xiaofang Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tkde.2023.3292974
摘要

Document-level Relation Extraction (RE) is a promising task aiming at identifying relations of multiple entity pairs in a document. Compared with the sentence-level counterpart, it has raised two significant challenges: a) In most cases, a relational fact can be adequately expressed via a small subset of sentences from the document, namely evidence. But the traditional method cannot model such strong semantic correlations between evidence sentences that collaborate to describe a specific relation; b) The data of this task is extremely long-tail in terms of too many NA instances and imbalanced relational types. Such data can mislead the tail prediction bias to the head categories in the RE model. In this paper, we present a novel E vidence reasoning and C urriculum learning method for D oc RE (DRE-EC) to address these challenges. Particularly, we first formulate evidence extraction as a sequential decision problem through a crafted reinforcement learning mechanism with an efficient path searching strategy to reduce the action space. Providing the evidence for each entity pair as a customized-filtered document in advance helps infer the relations better. To address the long-tail issue, we further develop a hybrid curriculum learning method at the NA-level (NC) and relation-level (RC) with our customized difficulty measure score. In NC, the NA samples are scheduled in an easy-to-hard scheme and gradually added, resulting in the data distribution from ideal and balanced to real and unbalanced. In RC, the scheme is switched into hard-to-easy to enhance the hard and tail samples. In addition, we propose a new Equalization adaptive Focal Loss(EFLoss) that can adjust to the changing data distribution and focus more on the tail categories. We conduct various experiments on two document-level RE benchmarks and achieve a remarkable improvement over previous competitive baselines. Furthermore, we provide detailed analyses of the advantages and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小吴搞科研采纳,获得10
刚刚
星辰完成签到,获得积分10
刚刚
1秒前
赘婿应助Smallhetao采纳,获得10
3秒前
4秒前
4秒前
FashionBoy应助ccc采纳,获得10
4秒前
哈哈哈哈完成签到 ,获得积分10
6秒前
玩儿发布了新的文献求助10
7秒前
7秒前
嘟嘟发布了新的文献求助10
8秒前
8秒前
啦啦啦完成签到 ,获得积分10
9秒前
xiaoyi完成签到 ,获得积分10
9秒前
冰箱里有灯完成签到,获得积分10
9秒前
dwls完成签到,获得积分10
10秒前
10秒前
xy小侠女完成签到,获得积分10
11秒前
Lucas应助高兴问凝采纳,获得10
11秒前
小天才儿童手表完成签到,获得积分10
12秒前
13秒前
14秒前
幽默的友灵完成签到,获得积分10
15秒前
123发布了新的文献求助10
15秒前
小心胖虎发布了新的文献求助10
16秒前
luckycc发布了新的文献求助50
16秒前
故意的曼荷完成签到 ,获得积分10
17秒前
Treasure完成签到,获得积分10
17秒前
17秒前
zmx完成签到 ,获得积分10
19秒前
19秒前
我是老大应助WELXCNK采纳,获得50
19秒前
山橘月完成签到,获得积分10
20秒前
高兴问凝发布了新的文献求助10
23秒前
Orange应助研友_LU4L4U5采纳,获得30
24秒前
25秒前
25秒前
27秒前
28秒前
爱静静应助火星上的安柏采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023