PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud

计算机科学 云计算 加密 查询优化 同态加密 方案(数学) 范围查询(数据库) 信息隐私 萨尔盖博 外包 大数据 私人信息检索 数据挖掘 Web搜索查询 情报检索 计算机安全 搜索引擎 数学 数学分析 政治学 法学 操作系统
作者
Yandong Zheng,Hui Zhu,Rongxing Lu,Yunguo Guan,Songnian Zhang,Fengwei Wang,Jun Shao,Hui Li
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tdsc.2023.3291715
摘要

Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely applied in the product recommendation. Considering privacy concerns, the outsourced query services are demanded to protect data privacy, and consequently a series of privacy-preserving query solutions have been put forth. Nevertheless, RkNN query over high-dimensional data has not been studied to date. In this work, we design the first efficient and privacy-preserving RkNN query scheme over encrypted high-dimensional data, named PHRkNN. Specifically, we first introduce a pivot filter condition for the RkNN query and utilize it to deliberately design a pivot filter R-tree (PFR-tree) to organize the high-dimensional dataset such that the RkNN query has sublinear query efficiency. Then, we propose our PHRkNN scheme by designing some homomorphic encryption based private algorithms and applying them to privately achieve PFR-tree based RkNN query. After that, we propose an oblivious PHRkNN scheme on the basis of the PHRkNN scheme by designing a private random tree permutation (PRTP) algorithm to protect the access pattern privacy. The security of our PHRkNN scheme and oblivious PHRkNN scheme is proved by the simulation-based security analysis. The performance is verified through computational costs and communication overheads evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱吃QQ糖完成签到,获得积分20
1秒前
2秒前
3秒前
3秒前
xzycmy完成签到,获得积分20
3秒前
暖暖完成签到,获得积分10
4秒前
4秒前
李健应助小巧的傲松采纳,获得10
5秒前
5秒前
xzycmy发布了新的文献求助30
7秒前
98发布了新的文献求助10
7秒前
潘婷婷呀发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
搜集达人应助坚定的草丛采纳,获得10
10秒前
木木发布了新的文献求助10
10秒前
Jasper应助健忘数据线采纳,获得10
12秒前
加油发布了新的文献求助10
12秒前
丑123完成签到 ,获得积分10
13秒前
fengbeing完成签到,获得积分10
14秒前
木目耶耶耶完成签到 ,获得积分10
14秒前
汉堡包应助潘婷婷呀采纳,获得10
15秒前
15秒前
科研通AI5应助DLDL采纳,获得10
16秒前
huahero2025应助sisyphus_yy采纳,获得10
18秒前
pluto应助shilye采纳,获得10
19秒前
科研通AI5应助负责的招牌采纳,获得10
20秒前
ytolll发布了新的文献求助10
20秒前
21秒前
21秒前
爱吃QQ糖发布了新的文献求助10
22秒前
啦啦啦发布了新的文献求助10
22秒前
23秒前
24秒前
lixm发布了新的文献求助10
25秒前
27秒前
小蘑菇应助健忘数据线采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745016
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056684
捐赠科研通 3004153
什么是DOI,文献DOI怎么找? 1649493
邀请新用户注册赠送积分活动 785344
科研通“疑难数据库(出版商)”最低求助积分说明 751049