S3Mix: Same Category Same Semantics Mixing for Augmenting Fine-grained Images

判别式 计算机科学 语义学(计算机科学) 图像(数学) 一般化 人工智能 遮罩(插图) 模式识别(心理学) 极限(数学) 上下文图像分类 对比度(视觉) 数学 数学分析 艺术 视觉艺术 程序设计语言
作者
Zi-Chao Zhang,Zhen-Duo Chen,Zhenyu Xie,Xin Luo,Xin-Shun Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (1): 1-16
标识
DOI:10.1145/3605892
摘要

Data augmentation is a common technique to improve the generalization performance of models for image classification. Although methods such as Mixup and CutMix that mix images randomly are indeed instrumental in general image classification, randomly swapping or masking regions is not friendly to fine-grained images, since the key to fine-grained image classification precisely lies in discriminative and informative regions, and it is unreasonable to generate labels solely consistent with the proportion of synthesis. Some erasing methods like Cutout even endanger fine-grained image classification because of erasing the discriminative regions by chance. In this article, we propose the Same Category Same Semantics Mixing method (S3Mix) corresponding to the characteristics of fine-grained images. Specifically, we limit the mixture to regions of the same category and semantics. The core of the method is two constraints. The exchange with the semantic region ensures the discrimination and semantics integrity of the generated image, and the exchange in the same class avoids the problem of unreasonable label generation. At the same time, we propose a homology loss to promote the semantic relationship between the generated positive image pairs. Experiments have been conducted on four fine-grained datasets, and the results show the proposed method is superior to the traditional image augmentation methods as well as some fine-grained data augmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果爸爸完成签到,获得积分10
刚刚
研友_LMN2rn完成签到,获得积分10
1秒前
1秒前
ding应助hay采纳,获得10
1秒前
姜小时发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
Hina完成签到,获得积分10
5秒前
7秒前
DrQyQ完成签到,获得积分10
7秒前
KKKZ发布了新的文献求助10
7秒前
7秒前
playpp完成签到,获得积分10
8秒前
8秒前
文静的海发布了新的文献求助10
8秒前
8秒前
土豆泥泥发布了新的文献求助10
9秒前
chem001完成签到,获得积分10
9秒前
xiaogui发布了新的文献求助10
9秒前
Tobin发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
邹小静完成签到 ,获得积分20
13秒前
13秒前
13秒前
Aa123321完成签到,获得积分10
15秒前
15秒前
苗条青槐完成签到,获得积分10
16秒前
海绵宝宝发布了新的文献求助10
17秒前
luotao应助文静的海采纳,获得10
17秒前
123关注了科研通微信公众号
17秒前
NexusExplorer应助穆振家采纳,获得10
17秒前
CodeCraft应助超帅的斌斌采纳,获得10
17秒前
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649821
求助须知:如何正确求助?哪些是违规求助? 4779250
关于积分的说明 15050421
捐赠科研通 4808796
什么是DOI,文献DOI怎么找? 2571853
邀请新用户注册赠送积分活动 1528134
关于科研通互助平台的介绍 1486877