已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visual Prediction of the Progression of Spinocerebellar Ataxia Type 3 Based on Machine Learning

脊髓小脑共济失调 马查多-约瑟夫病 共济失调 评定量表 内科学 机器学习 人工智能 医学 心理学 疾病 计算机科学 发展心理学 神经科学
作者
Danlei Ru,Jinchen Li,Linliu Peng,Hong Jiang,Rong Qiu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (10): 830-841
标识
DOI:10.2174/1574893618666230710140505
摘要

Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a clinically heterogeneous and progressive condition. Evaluation of its progression will contribute to clinical management and genetic counseling. Objective: The objective of this study was to provide a visualized interpretable prediction of the progression of SCA3/MJD based on machine learning (ML) methods. Methods: A total of 716 patients with SCA3/MJD were included in this study. The International Cooperative Ataxia Rating Scale (ICARS) and Scale for the Assessment and Rating of Ataxia (SARA) scores were used to quantitatively assess disease progression in the patients. Clinical and genotype information were collected as factors for predicting progression. Prediction models were constructed with ML algorithms, and the prediction results were then visualized to facilitate personalizing of clinical consultation. Results: The CAG repeat length of ATXN3 and its product with age, the duration of disease, and age were identified as the 4 most important factors for predicting the severity and progression of SCA3/MJD. The SVM-based model achieved the best performance in predicting the total ICARS and SARA scores, with accuracy (10%) values of 0.7619 for the SARA and 0.7042 for the ICARS. To visualize the predictions, line charts were used to show the expected progression over the next decade, and radar charts were used to show the scores of each part of the ICARS and SARA separately. Conclusion: We are the first group to apply ML algorithms to predict progression in SCA3/MJD and achieved desirable results. Visualization provided personalized predictions for each sample and can aid in developing clinical counseling regimens in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初雪完成签到,获得积分10
2秒前
lsong完成签到,获得积分10
3秒前
啦啦啦发布了新的文献求助10
3秒前
全栾发布了新的文献求助10
4秒前
qiang完成签到,获得积分20
5秒前
6秒前
10秒前
yar应助麦麦采纳,获得10
11秒前
11秒前
酷波er应助全栾采纳,获得10
11秒前
11秒前
饱满贞发布了新的文献求助10
11秒前
真的不会完成签到,获得积分10
11秒前
快乐寄风完成签到 ,获得积分10
11秒前
Ava应助阿九采纳,获得10
12秒前
我cr发布了新的文献求助10
13秒前
川川完成签到,获得积分10
13秒前
辰勃发布了新的文献求助10
15秒前
15秒前
qiang发布了新的文献求助20
16秒前
16秒前
不安毛豆发布了新的文献求助10
16秒前
全栾完成签到,获得积分20
18秒前
Gail完成签到 ,获得积分10
18秒前
19秒前
ding应助阿九采纳,获得10
20秒前
20秒前
想发sci发布了新的文献求助30
21秒前
辰勃完成签到,获得积分10
22秒前
HuLL发布了新的文献求助10
22秒前
LH发布了新的文献求助10
22秒前
吖牙发布了新的文献求助10
26秒前
26秒前
随意完成签到,获得积分10
30秒前
Solomon完成签到 ,获得积分0
34秒前
随意发布了新的文献求助10
34秒前
Balloon完成签到,获得积分10
36秒前
akun完成签到,获得积分10
39秒前
40秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752