亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding distracted driving patterns of ride-hailing drivers from multi-source data: Applying association rule mining

分心驾驶 分散注意力 联想(心理学) 关联规则学习 计算机科学 数据科学 数据挖掘 心理学 认知心理学 心理治疗师
作者
Guanyang Xing,Shuyan Chen,Yongfeng Ma,Chenxiao Zhang,Zhuopeng Xie,Yi Zhu
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:16 (4): 390-420
标识
DOI:10.1080/19439962.2023.2221204
摘要

AbstractAbstractThis study aims to explore the association between distracted driving (including cognitive, visual, operational, and auditory distractions) and multi-source features of ride-hailing drivers, and to discover frequent patterns of distracted driving. To achieve this, a natural driving experiment was conducted, and an association rule mining ('Apriori' algorithm) was used to uncover hidden rules between distracted driving and the multi-source features (including emotion, valence, arousal, driving tasks, cumulative driving hours, velocity, longitudinal acceleration, lateral acceleration, heading rate, presence of intersections, traffic status, and driving time of day). Results indicate that distracted driving is prevalent among ride-hailing drivers in specific scenarios, including trips without passengers, non-intersection sections, driving for over 4 h, and congested traffic conditions. The emotional state of drivers has also been found to have an interesting association with distracted driving. For instance, cognitive and operational distraction were highly associated with positive driving emotions, but auditory distraction caused by passenger interference was highly associated with negative driving emotions. Moreover, there are variations in distracted driving patterns across different categories. These findings can help ride-hailing platforms develop more scientific and effective distracted driving monitoring and prevention strategies.Keywords: Ride-hailingdistracted drivingassociation rule miningnaturalistic driving dataemotion data Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingNational Natural Science Foundation of China (No. 52172342); the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_0062)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lena完成签到 ,获得积分10
3秒前
阿泽完成签到,获得积分10
46秒前
标致咖啡完成签到 ,获得积分10
2分钟前
慕容天磊完成签到,获得积分10
3分钟前
爱静静完成签到,获得积分0
4分钟前
正直夜安完成签到 ,获得积分10
4分钟前
7分钟前
8分钟前
Ann完成签到,获得积分10
9分钟前
桃汁荔枝完成签到 ,获得积分10
9分钟前
连安阳完成签到,获得积分10
9分钟前
zsmj23完成签到 ,获得积分0
9分钟前
丘比特应助科研通管家采纳,获得30
9分钟前
田様应助科研通管家采纳,获得80
9分钟前
Hello应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
顾矜应助方方采纳,获得10
11分钟前
桃汁荔枝关注了科研通微信公众号
11分钟前
11分钟前
方方发布了新的文献求助10
11分钟前
sharronjxx应助方方采纳,获得10
11分钟前
方方完成签到,获得积分10
11分钟前
慕青应助科研通管家采纳,获得10
11分钟前
稻子完成签到 ,获得积分10
12分钟前
空曲完成签到 ,获得积分10
12分钟前
16分钟前
16分钟前
吕懿发布了新的文献求助10
17分钟前
标致诗双发布了新的文献求助10
17分钟前
大个应助吕懿采纳,获得10
17分钟前
17分钟前
标致诗双完成签到,获得积分10
18分钟前
19分钟前
大模型应助摇摇猪采纳,获得10
22分钟前
22分钟前
新奇完成签到 ,获得积分10
22分钟前
小蘑菇应助oleskarabach采纳,获得10
23分钟前
通科研完成签到 ,获得积分10
24分钟前
24分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052552
求助须知:如何正确求助?哪些是违规求助? 2709826
关于积分的说明 7418203
捐赠科研通 2354370
什么是DOI,文献DOI怎么找? 1245934
科研通“疑难数据库(出版商)”最低求助积分说明 605934
版权声明 595921