A Robust Multilabel Feature Selection Approach Based on Graph Structure Considering Fuzzy Dependency and Feature Interaction

特征选择 人工智能 模糊集 特征(语言学) 模糊逻辑 数学 k-最近邻算法 计算机科学 依赖关系(UML) 模式识别(心理学) 数据挖掘 机器学习 语言学 哲学
作者
Tengyu Yin,Hongmei Chen,Zhong Yuan,Jihong Wan,Keyu Liu,Shi‐Jinn Horng,Tianrui Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4516-4528 被引量:43
标识
DOI:10.1109/tfuzz.2023.3287193
摘要

The performance of multilabel learning depends heavily on the quality of the input features. A mass of irrelevant and redundant features may seriously affect the performance of multilabel learning, and feature selection is an effective technique to solve this problem. However, most multilabel feature selection methods mainly emphasize removing these useless features, and the exploration of feature interaction is ignored. Moreover, the widespread existence of real-world data with uncertainty, ambiguity, and noise limits the performance of feature selection. To this end, our work is dedicated to designing an efficient and robust multilabel feature selection scheme. First, the distribution character of multilabel data is analyzed to generate robust fuzzy multineighborhood granules. By exploring the classification information implied in the data under the granularity structure, a robust multilabel $k$ -nearest neighbor fuzzy rough set model is constructed, and the concept of fuzzy dependency is studied. Second, a series of fuzzy multineighborhood uncertainty measures in $k$ -nearest neighbor fuzzy rough approximation spaces are studied to analyze the correlations of feature pairs, including interactivity. Third, by investigating the uncertainty measure between feature and label, between features, multilabel data is modeled as a complete weighted graph. Then, these vertices are assessed iteratively to guide the assignment of feature weights. Finally, a graph structure-based robust multilabel feature selection algorithm (GRMFS) is designed. The experiments are conducted on 15 multilabel datasets. The results verify the superior performance of GRMFS as compared with nine representative feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ElbingX完成签到,获得积分10
刚刚
zwk完成签到,获得积分10
1秒前
1秒前
2秒前
joker_k应助冷静的谷云采纳,获得20
2秒前
3秒前
ssss完成签到,获得积分10
4秒前
传奇3应助猪猪hero采纳,获得10
4秒前
开心小霸王完成签到 ,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI5应助和谐乐儿采纳,获得10
5秒前
无花果应助科研通管家采纳,获得50
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI5应助DDB采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
7秒前
逆境发布了新的文献求助10
7秒前
somnus完成签到,获得积分10
7秒前
兆锦momo发布了新的文献求助10
7秒前
8秒前
大可发布了新的文献求助10
8秒前
搜集达人应助木木采纳,获得10
8秒前
bai完成签到,获得积分20
9秒前
重要的菲鹰完成签到 ,获得积分10
9秒前
JamesPei应助清爽的初露采纳,获得30
9秒前
秦川发布了新的文献求助20
10秒前
聪慧剑封发布了新的文献求助10
10秒前
10秒前
10秒前
aaa发布了新的文献求助10
10秒前
易玟完成签到,获得积分10
10秒前
somnus发布了新的文献求助10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627