Personality Detection using Kernel-based Ensemble Model for Leveraging Social Psychology in Online Networks

计算机科学 人工智能 社会化媒体 支持向量机 机器学习 投票 人格 集合预报 集成学习 社会心理学 心理学 万维网 政治学 政治 法学
作者
Akshi Kumar,Rohit Beniwal,Dipika Jain
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:22 (5): 1-20 被引量:7
标识
DOI:10.1145/3571584
摘要

The Asian social networking market dominates the world landscape with the highest consumer penetration rate. Businesses and investors often look for winning strategies to attract consumers to increase revenues from sales, advertisements, and other services offered on social media platforms. Social media engagement and online relational cohesion have often been defined within the frameworks of social psychology and personality identification is a possible way in which social psychology can inform, engage, and learn from social media. Personality profiling has many real-world applications, including preference-based recommendation systems, relationship building, and career counseling. This research puts forward a novel kernel-based soft-voting ensemble model for personality detection from natural language, KBSVE-P. The KBSVE-P model is built by first evaluating the performance of various Support Vector Machine (SVM) kernels, namely radial basis function (RBF), linear, sigmoidal, and polynomial, to find the best-suited kernel for automatic personality detection in natural language text. Next, an ensemble of SVM kernels is implemented with a variety of voting techniques, such as soft voting, hard voting, and weighted hard voting. The model is evaluated on the publicly available Kaggle_MBTI dataset and a novel South Asian, Indian, low-resource Hindi language _MBTI (pronounced as vishesh charitr, meaning personality in Hindi) dataset for detecting a user's personality across four personality traits, namely introvert/extrovert (IE), thinking/feeling (TF), sensing/intuitive (SI), and judging/perceiving (JP). The proposed kernel-based ensemble with soft voting, KBSVE-P, outperforms the existing models on English Kaggle-MBTI dataset with an average F-score of 85.677 and achieves an accuracy of 66.89 for the Hindi _MBTI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹草动玉米粒完成签到,获得积分10
1秒前
酷波er应助Lingzi采纳,获得10
1秒前
情怀应助学习是头等大事采纳,获得10
2秒前
juzi完成签到,获得积分20
4秒前
姜水完成签到,获得积分10
4秒前
haimianbaobao完成签到 ,获得积分10
4秒前
冬冬冬完成签到,获得积分20
5秒前
JeremyLiu发布了新的文献求助10
5秒前
cs完成签到 ,获得积分10
6秒前
gyl完成签到 ,获得积分10
9秒前
something发布了新的文献求助10
9秒前
杨杨完成签到,获得积分10
12秒前
13秒前
13秒前
JeremyLiu完成签到,获得积分10
13秒前
平常的毛豆应助舒适亦凝采纳,获得10
13秒前
领导范儿应助舒适亦凝采纳,获得10
13秒前
13秒前
无聊的南松完成签到,获得积分20
13秒前
limbo完成签到 ,获得积分10
14秒前
麻瓜完成签到,获得积分20
14秒前
呆萌安双完成签到 ,获得积分10
17秒前
17秒前
冬冬冬发布了新的文献求助10
18秒前
pcr163应助眼睛大的天抒采纳,获得100
18秒前
舒适亦凝完成签到,获得积分10
20秒前
PGS完成签到 ,获得积分10
22秒前
御景风完成签到,获得积分10
22秒前
22秒前
22秒前
zzzz完成签到,获得积分10
23秒前
23秒前
uuuu完成签到 ,获得积分10
25秒前
HEIKU应助dandan采纳,获得10
25秒前
科研通AI2S应助dandan采纳,获得10
25秒前
xx关注了科研通微信公众号
26秒前
CC2333完成签到,获得积分10
26秒前
bioyong发布了新的文献求助10
26秒前
2linn完成签到,获得积分20
27秒前
DEF应助炝拌维C采纳,获得20
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903441
关于积分的说明 8325296
捐赠科研通 2573448
什么是DOI,文献DOI怎么找? 1398306
科研通“疑难数据库(出版商)”最低求助积分说明 654097
邀请新用户注册赠送积分活动 632686