Semi-supervised rotation-invariant representation learning for wafer map pattern analysis

薄脆饼 计算机科学 判别式 人工智能 分类器(UML) 模式识别(心理学) 数据挖掘 材料科学 光电子学
作者
Hyungu Kang,Seokho Kang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105864-105864
标识
DOI:10.1016/j.engappai.2023.105864
摘要

Recently, data-driven approaches have been widely employed to analyze the defect patterns in wafer maps, which are crucial for identifying the root causes of failures in the semiconductor fabrication process. Representation learning embeds wafer maps into compact vector representations of useful features, based on which various downstream tasks can be performed to efficiently analyze the patterns on a large scale. If wafer maps are annotated with their defect class labels, the learned representations of wafer maps will be more informative and discriminative in defect patterns. However, the manual labeling of all wafer maps by domain experts is difficult due to practical constraints. In this study, we present a semi-supervised representation learning method that fully utilizes the information from both unlabeled and labeled wafer maps to learn better representations of wafer maps with a lower labeling cost. Given a partially labeled dataset, rotation-invariant representations of wafer maps are learned using the following three objectives. First, each unlabeled wafer map is close to any wafer map of a certain class and far from those of other classes. Second, each pair of labeled wafer maps are close to each other if they belong to the same class and are far from each other otherwise. Third, the different rotations of each wafer map are close to each other for both the unlabeled and labeled wafer maps. The effectiveness of the proposed method is demonstrated for various downstream tasks related to wafer map pattern analysis: visualization, clustering, retrieval, and classifier training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
taynew完成签到,获得积分10
1秒前
深情安青应助李HC采纳,获得10
1秒前
石头饼完成签到 ,获得积分10
2秒前
summer完成签到,获得积分10
2秒前
zhenzhen发布了新的文献求助10
2秒前
可莉完成签到 ,获得积分10
3秒前
Japan发布了新的文献求助10
3秒前
拿捏陕科大完成签到,获得积分10
3秒前
4秒前
Lucas应助Yu采纳,获得10
4秒前
5秒前
zjp_88258825发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
wbh发布了新的文献求助20
7秒前
科研扫地僧完成签到,获得积分10
7秒前
8秒前
8秒前
苗条映菱完成签到,获得积分10
8秒前
8秒前
安安完成签到,获得积分10
9秒前
研友_LN3xyn完成签到,获得积分10
9秒前
10秒前
真白白鸭发布了新的文献求助30
11秒前
领导范儿应助Nowaki采纳,获得10
11秒前
光亮之双发布了新的文献求助10
12秒前
12秒前
乐乐应助Aoopiy采纳,获得10
12秒前
喻安琪发布了新的文献求助10
12秒前
领导范儿应助开朗的蚂蚁采纳,获得10
13秒前
dd完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
oh233完成签到,获得积分20
15秒前
tt完成签到 ,获得积分10
15秒前
在水一方应助一吃就饱采纳,获得30
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826068
求助须知:如何正确求助?哪些是违规求助? 6013492
关于积分的说明 15568424
捐赠科研通 4946396
什么是DOI,文献DOI怎么找? 2664798
邀请新用户注册赠送积分活动 1610566
关于科研通互助平台的介绍 1565571