Crowdsourced last mile delivery: Collaborative workforce assignment

计算机科学 任务(项目管理) 最后一英里(运输) 禁忌搜索 移交 集合(抽象数据类型) 运筹学 质量(理念) 英里 计算机网络 工程类 人工智能 哲学 物理 程序设计语言 系统工程 认识论 天文
作者
Nada Elsokkary,Hadi Otrok,Shakti Singh,Rabeb Mizouni,Hassan Barada,Mohammed Omar
出处
期刊:Internet of things [Elsevier BV]
卷期号:22: 100692-100692 被引量:16
标识
DOI:10.1016/j.iot.2023.100692
摘要

In this paper, we propose a last mile delivery selection model using crowdsourced workers that optimizes the trade-off between cost, time, and workers' performance. Most of the current methods utilize either greedy worker–task assignments or a task-by-task basis selection to reach a sufficient worker–task assignment. However, a better trade-off between the distance traveled and delivery time can be further obtained by considering the quality of performance on the tasks as a whole rather than treating tasks individually. As a solution, we present a novel framework for last mile delivery which separates the routing and assignment aspects of the problem and solves the assignment problem by maximizing the overall quality of the delivery. The Quality of Service (QoS) is defined as a non-linear function of the number of allocated tasks, distance traveled, timeliness of the delivery, workers' reputation, and confidence in delivery completion. In the first step, the delivery tasks to be shipped from a single warehouse are clustered using k-medoids. The set of tasks in each cluster are to be delivered by the same worker. The shipping provider will send a truck to handover the corresponding parcels to each worker. Accordingly, the shortest route for the truck is computed using Tabu search, where the handover points to the potential workers are the centroids of the clusters. Tabu search is also used to compute the potential workers' routes from the handover point through all the tasks in the cluster. Finally, genetic algorithm is used to effectively solve the assignment problem where each worker is assigned to several neighboring tasks. The performance of the proposed assignment mechanism is evaluated and compared to greedy solutions with respect to the QoS as well as its components. The results show that the proposed algorithm achieves 100% task allocation ratio while outperforming greedy selections in terms of QoS. Moreover, it is able to increase confidence in task completion by 20.3% on average and prevent delays to the schedule of the truck.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助林lin采纳,获得10
1秒前
李爱国应助琲珂采纳,获得10
2秒前
好好做人发布了新的文献求助10
3秒前
蜀黍完成签到 ,获得积分10
3秒前
沉默的寻凝完成签到 ,获得积分10
3秒前
JAMES完成签到,获得积分10
4秒前
希望天下0贩的0应助ZG采纳,获得10
5秒前
7秒前
8秒前
青葙子发布了新的文献求助10
10秒前
xixihaha发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
隐形曼青应助标致的问晴采纳,获得10
13秒前
晚心发布了新的文献求助10
13秒前
棠真完成签到 ,获得积分0
15秒前
16秒前
zxf完成签到,获得积分10
17秒前
17秒前
17秒前
寒冷的曼寒完成签到,获得积分10
20秒前
echo发布了新的文献求助10
20秒前
20秒前
zxf发布了新的文献求助10
21秒前
22秒前
青葙子完成签到,获得积分20
22秒前
23秒前
柯一一应助xixihaha采纳,获得10
23秒前
风中醉蝶完成签到,获得积分10
23秒前
dbdxyty发布了新的文献求助10
24秒前
24秒前
xiongxiaoli2000完成签到,获得积分10
25秒前
小火花完成签到,获得积分20
26秒前
ZQP发布了新的文献求助10
26秒前
思源应助驱蚊器采纳,获得10
28秒前
乐观静蕾发布了新的文献求助10
29秒前
29秒前
Orange应助Irving采纳,获得10
29秒前
30秒前
落后的一手完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415