Crowdsourced last mile delivery: Collaborative workforce assignment

计算机科学 任务(项目管理) 最后一英里(运输) 禁忌搜索 移交 集合(抽象数据类型) 运筹学 质量(理念) 英里 计算机网络 工程类 人工智能 哲学 物理 程序设计语言 系统工程 认识论 天文
作者
Nada Elsokkary,Hadi Otrok,Shakti Singh,Rabeb Mizouni,Hassan Barada,Mohammed Omar
出处
期刊:Internet of things [Elsevier]
卷期号:22: 100692-100692 被引量:16
标识
DOI:10.1016/j.iot.2023.100692
摘要

In this paper, we propose a last mile delivery selection model using crowdsourced workers that optimizes the trade-off between cost, time, and workers' performance. Most of the current methods utilize either greedy worker–task assignments or a task-by-task basis selection to reach a sufficient worker–task assignment. However, a better trade-off between the distance traveled and delivery time can be further obtained by considering the quality of performance on the tasks as a whole rather than treating tasks individually. As a solution, we present a novel framework for last mile delivery which separates the routing and assignment aspects of the problem and solves the assignment problem by maximizing the overall quality of the delivery. The Quality of Service (QoS) is defined as a non-linear function of the number of allocated tasks, distance traveled, timeliness of the delivery, workers' reputation, and confidence in delivery completion. In the first step, the delivery tasks to be shipped from a single warehouse are clustered using k-medoids. The set of tasks in each cluster are to be delivered by the same worker. The shipping provider will send a truck to handover the corresponding parcels to each worker. Accordingly, the shortest route for the truck is computed using Tabu search, where the handover points to the potential workers are the centroids of the clusters. Tabu search is also used to compute the potential workers' routes from the handover point through all the tasks in the cluster. Finally, genetic algorithm is used to effectively solve the assignment problem where each worker is assigned to several neighboring tasks. The performance of the proposed assignment mechanism is evaluated and compared to greedy solutions with respect to the QoS as well as its components. The results show that the proposed algorithm achieves 100% task allocation ratio while outperforming greedy selections in terms of QoS. Moreover, it is able to increase confidence in task completion by 20.3% on average and prevent delays to the schedule of the truck.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈紊完成签到 ,获得积分10
2秒前
lzl完成签到,获得积分10
2秒前
淡然冬灵应助AliEmbark采纳,获得30
3秒前
5秒前
你才是小哭包完成签到 ,获得积分10
6秒前
SuYan完成签到 ,获得积分10
7秒前
wdd完成签到 ,获得积分10
10秒前
12秒前
daguan发布了新的文献求助10
12秒前
chrysan完成签到,获得积分10
12秒前
LL完成签到 ,获得积分10
12秒前
12秒前
单身的老太完成签到,获得积分10
14秒前
久9完成签到 ,获得积分10
16秒前
kbkyvuy完成签到 ,获得积分10
20秒前
雾色笼晓树苍完成签到 ,获得积分10
20秒前
小葡萄完成签到 ,获得积分10
21秒前
今后应助daguan采纳,获得10
22秒前
CMD完成签到 ,获得积分10
30秒前
Mic应助Duke采纳,获得10
31秒前
谢陈完成签到 ,获得积分10
39秒前
40秒前
qq1083716237完成签到,获得积分0
45秒前
ChatGPT发布了新的文献求助10
45秒前
aspirin完成签到 ,获得积分10
46秒前
Meikinn完成签到,获得积分20
48秒前
Allen完成签到,获得积分10
50秒前
黄花完成签到 ,获得积分10
50秒前
Tonald Yang发布了新的文献求助10
51秒前
潜行者完成签到 ,获得积分10
54秒前
58秒前
59秒前
1分钟前
jixuchance发布了新的文献求助10
1分钟前
儿学化学打断腿完成签到,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
c123完成签到 ,获得积分10
1分钟前
韩寒完成签到 ,获得积分10
1分钟前
Wait201113应助勿忘我采纳,获得10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866712
求助须知:如何正确求助?哪些是违规求助? 6426461
关于积分的说明 15654910
捐赠科研通 4981701
什么是DOI,文献DOI怎么找? 2686725
邀请新用户注册赠送积分活动 1629535
关于科研通互助平台的介绍 1587532