Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy

计算机科学 一般化 序列(生物学) 人工智能 机器学习 特征(语言学) 交互信息 过程(计算) 数据挖掘 数学 统计 操作系统 数学分析 哲学 生物 遗传学 语言学
作者
Binjie Guo,Hanyu Zheng,Haohan Jiang,Xiaodan Li,Naiyu Guan,Yanming Zuo,Yicheng Zhang,Hengfu Yang,Xuhua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbac628
摘要

Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得30
刚刚
1秒前
英姑应助科研通管家采纳,获得50
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
LEMONS应助虚幻的青槐采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
1秒前
12完成签到,获得积分20
1秒前
曾鑫发布了新的文献求助10
1秒前
重要的奇异果完成签到,获得积分20
2秒前
司徒恋风完成签到,获得积分10
3秒前
3秒前
4秒前
冷酷从云发布了新的文献求助10
5秒前
5秒前
SciGPT应助司空豁采纳,获得30
5秒前
烟花应助12采纳,获得10
6秒前
7秒前
8秒前
Nagi参上完成签到,获得积分10
8秒前
小猪玉发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
领导范儿应助ddd采纳,获得10
11秒前
复杂焦完成签到 ,获得积分10
11秒前
小蘑菇应助lorentzh采纳,获得10
12秒前
Crystal完成签到,获得积分10
12秒前
13秒前
冷酷从云完成签到,获得积分10
14秒前
孙皓阳发布了新的文献求助10
14秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122