Semi‐supervised medical image segmentation via cross‐guidance and feature‐level consistency dual regularization schemes

正规化(语言学) 人工智能 计算机科学 分割 编码器 模式识别(心理学) 医学影像学 深度学习 变压器 图像分割 特征提取 量子力学 操作系统 物理 电压
作者
Xiaohong R. Yang,Jiya Tian,Yaping Wan,Mingzhi Chen,Lingna Chen,Junxi Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4269-4281 被引量:1
标识
DOI:10.1002/mp.16217
摘要

Abstract Background Semi‐supervised learning is becoming an effective solution for medical image segmentation because of the lack of a large amount of labeled data. Purpose Consistency‐based strategy is widely used in semi‐supervised learning. However, it is still a challenging problem because of the coupling of CNN‐based isomorphic models. In this study, we propose a new semi‐supervised medical image segmentation network (DRS‐Net) based on a dual‐regularization scheme to address this challenge. Methods The proposed model consists of a CNN and a multidecoder hybrid Transformer, which adopts two regularization schemes to extract more generalized representations for unlabeled data. Considering the difference in learning paradigm, we introduce the cross‐guidance between CNN and hybrid Transformer, which uses the pseudo label output from one model to supervise the other model better to excavate valid representations from unlabeled data. In addition, we use feature‐level consistency regularization to effectively improve the feature extraction performance. We apply different perturbations to the feature maps output from the hybrid Transformer encoder and keep an invariance of the predictions to enhance the encoder's representations. Results We have extensively evaluated our approach on three typical medical image datasets, including CT slices from Spleen, MRI slices from the Heart, and FM Nuclei. We compare DRS‐Net with state‐of‐the‐art methods, and experiment results show that DRS‐Net performs better on the Spleen dataset, where the dice similarity coefficient increased by about 3.5%. The experimental results on the Heart and Nuclei datasets show that DRS‐Net also improves the segmentation effect of the two datasets. Conclusions The proposed DRS‐Net enhances the segmentation performance of the datasets with three different medical modalities, where the dual‐regularization scheme extracts more generalized representations and solves the overfitting problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助失眠夏之采纳,获得10
刚刚
1秒前
afterly发布了新的文献求助10
1秒前
1秒前
3秒前
星河zp发布了新的文献求助10
3秒前
故城完成签到 ,获得积分10
3秒前
失眠夏之完成签到,获得积分20
4秒前
ssk发布了新的文献求助10
5秒前
Lucas应助未曾提起采纳,获得10
5秒前
努力看文献的大头完成签到,获得积分10
5秒前
飞飞鱼完成签到,获得积分10
5秒前
bkagyin应助REBACK采纳,获得10
5秒前
Akim应助雪山飞龙采纳,获得20
7秒前
Xiaoxiannv完成签到,获得积分10
8秒前
三叔应助星河zp采纳,获得10
8秒前
星辰发布了新的文献求助10
8秒前
zyq应助柯善若采纳,获得10
10秒前
SmoonYK完成签到,获得积分10
13秒前
13秒前
巴拉巴拉发布了新的文献求助10
14秒前
与我常在发布了新的文献求助10
15秒前
yud发布了新的文献求助10
15秒前
16秒前
基础题应助独特的凝荷采纳,获得10
17秒前
星河zp完成签到,获得积分10
17秒前
冯小逢发布了新的文献求助10
17秒前
zmx完成签到 ,获得积分10
18秒前
18秒前
REBACK发布了新的文献求助10
20秒前
FashionBoy应助布丁采纳,获得10
21秒前
zero完成签到,获得积分10
21秒前
23秒前
NexusExplorer应助ssk采纳,获得10
23秒前
外向的雁玉完成签到,获得积分10
23秒前
Lucas应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023