已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi‐supervised medical image segmentation via cross‐guidance and feature‐level consistency dual regularization schemes

正规化(语言学) 人工智能 计算机科学 分割 编码器 模式识别(心理学) 医学影像学 深度学习 变压器 图像分割 特征提取 量子力学 操作系统 物理 电压
作者
Yang Xiaosu,Jiya Tian,Yaping Wan,Mingzhi Chen,Lingna Chen,Junxi Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4269-4281 被引量:9
标识
DOI:10.1002/mp.16217
摘要

Semi-supervised learning is becoming an effective solution for medical image segmentation because of the lack of a large amount of labeled data.Consistency-based strategy is widely used in semi-supervised learning. However, it is still a challenging problem because of the coupling of CNN-based isomorphic models. In this study, we propose a new semi-supervised medical image segmentation network (DRS-Net) based on a dual-regularization scheme to address this challenge.The proposed model consists of a CNN and a multidecoder hybrid Transformer, which adopts two regularization schemes to extract more generalized representations for unlabeled data. Considering the difference in learning paradigm, we introduce the cross-guidance between CNN and hybrid Transformer, which uses the pseudo label output from one model to supervise the other model better to excavate valid representations from unlabeled data. In addition, we use feature-level consistency regularization to effectively improve the feature extraction performance. We apply different perturbations to the feature maps output from the hybrid Transformer encoder and keep an invariance of the predictions to enhance the encoder's representations.We have extensively evaluated our approach on three typical medical image datasets, including CT slices from Spleen, MRI slices from the Heart, and FM Nuclei. We compare DRS-Net with state-of-the-art methods, and experiment results show that DRS-Net performs better on the Spleen dataset, where the dice similarity coefficient increased by about 3.5%. The experimental results on the Heart and Nuclei datasets show that DRS-Net also improves the segmentation effect of the two datasets.The proposed DRS-Net enhances the segmentation performance of the datasets with three different medical modalities, where the dual-regularization scheme extracts more generalized representations and solves the overfitting problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ruler完成签到,获得积分10
1秒前
hhhi发布了新的文献求助10
2秒前
瓶盖发布了新的文献求助10
3秒前
6秒前
8秒前
9秒前
龚书婷发布了新的文献求助10
12秒前
儒雅香彤完成签到 ,获得积分10
12秒前
银杏完成签到,获得积分10
13秒前
詹卫卫完成签到 ,获得积分10
13秒前
贲立辉发布了新的文献求助10
14秒前
18秒前
Tianji发布了新的文献求助10
21秒前
23秒前
梅倪完成签到,获得积分10
26秒前
26秒前
烟花应助Tianji采纳,获得10
27秒前
爆米花应助发粪涂墙采纳,获得10
28秒前
儒雅致远发布了新的文献求助10
28秒前
29秒前
30秒前
DT发布了新的文献求助10
32秒前
水之冬发布了新的文献求助10
34秒前
灰原哀发布了新的文献求助10
35秒前
35秒前
38秒前
0000完成签到 ,获得积分10
39秒前
Linbo发布了新的文献求助10
40秒前
Tianji完成签到,获得积分20
41秒前
发粪涂墙发布了新的文献求助10
42秒前
keplek完成签到 ,获得积分10
44秒前
45秒前
阿烨完成签到,获得积分10
46秒前
一只半夏完成签到,获得积分10
46秒前
48秒前
思源应助Nowind采纳,获得10
52秒前
YY完成签到,获得积分20
53秒前
FIB菜狗发布了新的文献求助10
55秒前
chen完成签到,获得积分10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216