Semi‐supervised medical image segmentation via cross‐guidance and feature‐level consistency dual regularization schemes

正规化(语言学) 人工智能 计算机科学 分割 编码器 模式识别(心理学) 医学影像学 深度学习 变压器 图像分割 特征提取 量子力学 操作系统 物理 电压
作者
Yang Xiaosu,Jiya Tian,Yaping Wan,Mingzhi Chen,Lingna Chen,Junxi Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4269-4281 被引量:6
标识
DOI:10.1002/mp.16217
摘要

Semi-supervised learning is becoming an effective solution for medical image segmentation because of the lack of a large amount of labeled data.Consistency-based strategy is widely used in semi-supervised learning. However, it is still a challenging problem because of the coupling of CNN-based isomorphic models. In this study, we propose a new semi-supervised medical image segmentation network (DRS-Net) based on a dual-regularization scheme to address this challenge.The proposed model consists of a CNN and a multidecoder hybrid Transformer, which adopts two regularization schemes to extract more generalized representations for unlabeled data. Considering the difference in learning paradigm, we introduce the cross-guidance between CNN and hybrid Transformer, which uses the pseudo label output from one model to supervise the other model better to excavate valid representations from unlabeled data. In addition, we use feature-level consistency regularization to effectively improve the feature extraction performance. We apply different perturbations to the feature maps output from the hybrid Transformer encoder and keep an invariance of the predictions to enhance the encoder's representations.We have extensively evaluated our approach on three typical medical image datasets, including CT slices from Spleen, MRI slices from the Heart, and FM Nuclei. We compare DRS-Net with state-of-the-art methods, and experiment results show that DRS-Net performs better on the Spleen dataset, where the dice similarity coefficient increased by about 3.5%. The experimental results on the Heart and Nuclei datasets show that DRS-Net also improves the segmentation effect of the two datasets.The proposed DRS-Net enhances the segmentation performance of the datasets with three different medical modalities, where the dual-regularization scheme extracts more generalized representations and solves the overfitting problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
取法乎上完成签到 ,获得积分10
刚刚
xiaozheng完成签到,获得积分10
2秒前
情怀应助一朵小鲜花儿采纳,获得10
6秒前
海鲜汤完成签到 ,获得积分10
6秒前
7秒前
12秒前
科研通AI5应助大力的无声采纳,获得10
12秒前
bkagyin应助大力的无声采纳,获得10
12秒前
13秒前
13秒前
13秒前
CodeCraft应助大力的无声采纳,获得10
13秒前
丘比特应助大力的无声采纳,获得10
13秒前
乐乐应助大力的无声采纳,获得10
13秒前
NexusExplorer应助大力的无声采纳,获得10
13秒前
在水一方应助大力的无声采纳,获得10
13秒前
CipherSage应助大力的无声采纳,获得10
13秒前
z7777777完成签到,获得积分10
13秒前
了0完成签到 ,获得积分10
13秒前
寒冷的复天完成签到,获得积分10
14秒前
15秒前
风筝鱼完成签到 ,获得积分10
15秒前
满意冷荷发布了新的文献求助10
16秒前
16秒前
cjjwei完成签到 ,获得积分10
16秒前
CipherSage应助Fanny采纳,获得20
17秒前
科研通AI2S应助小白果果采纳,获得10
17秒前
18秒前
shyの煜完成签到 ,获得积分10
18秒前
20秒前
刘佳佳完成签到 ,获得积分10
21秒前
兴奋觅海完成签到,获得积分10
22秒前
22秒前
cytheria完成签到 ,获得积分10
23秒前
诸笑白发布了新的文献求助10
24秒前
一生所爱完成签到,获得积分10
24秒前
Z1070741749完成签到,获得积分10
24秒前
sad发布了新的文献求助10
25秒前
26秒前
Z1070741749发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851