亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi‐supervised medical image segmentation via cross‐guidance and feature‐level consistency dual regularization schemes

正规化(语言学) 人工智能 计算机科学 分割 编码器 模式识别(心理学) 医学影像学 深度学习 变压器 图像分割 特征提取 量子力学 操作系统 物理 电压
作者
Yang Xiaosu,Jiya Tian,Yaping Wan,Mingzhi Chen,Lingna Chen,Junxi Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4269-4281 被引量:9
标识
DOI:10.1002/mp.16217
摘要

Semi-supervised learning is becoming an effective solution for medical image segmentation because of the lack of a large amount of labeled data.Consistency-based strategy is widely used in semi-supervised learning. However, it is still a challenging problem because of the coupling of CNN-based isomorphic models. In this study, we propose a new semi-supervised medical image segmentation network (DRS-Net) based on a dual-regularization scheme to address this challenge.The proposed model consists of a CNN and a multidecoder hybrid Transformer, which adopts two regularization schemes to extract more generalized representations for unlabeled data. Considering the difference in learning paradigm, we introduce the cross-guidance between CNN and hybrid Transformer, which uses the pseudo label output from one model to supervise the other model better to excavate valid representations from unlabeled data. In addition, we use feature-level consistency regularization to effectively improve the feature extraction performance. We apply different perturbations to the feature maps output from the hybrid Transformer encoder and keep an invariance of the predictions to enhance the encoder's representations.We have extensively evaluated our approach on three typical medical image datasets, including CT slices from Spleen, MRI slices from the Heart, and FM Nuclei. We compare DRS-Net with state-of-the-art methods, and experiment results show that DRS-Net performs better on the Spleen dataset, where the dice similarity coefficient increased by about 3.5%. The experimental results on the Heart and Nuclei datasets show that DRS-Net also improves the segmentation effect of the two datasets.The proposed DRS-Net enhances the segmentation performance of the datasets with three different medical modalities, where the dual-regularization scheme extracts more generalized representations and solves the overfitting problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖元容完成签到,获得积分10
3秒前
scholar丨崔发布了新的文献求助10
7秒前
13秒前
淡定的彩虹完成签到,获得积分10
18秒前
22秒前
sss发布了新的文献求助10
26秒前
33秒前
情怀应助科研通管家采纳,获得10
34秒前
34秒前
卡卡完成签到 ,获得积分10
36秒前
CNY完成签到 ,获得积分10
45秒前
赘婿应助_ban采纳,获得10
1分钟前
1分钟前
bksqc发布了新的文献求助10
1分钟前
bksqc完成签到,获得积分10
1分钟前
卑微学术人完成签到 ,获得积分10
1分钟前
1分钟前
无花果应助feifei采纳,获得10
2分钟前
griffon完成签到,获得积分10
2分钟前
汉堡包应助通通采纳,获得10
2分钟前
2分钟前
Huay完成签到 ,获得积分10
2分钟前
tingting9发布了新的文献求助10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
kd1412应助科研通管家采纳,获得10
2分钟前
善学以致用应助吴昕昕采纳,获得10
2分钟前
tingting9完成签到,获得积分10
2分钟前
吾日三省吾身完成签到,获得积分10
2分钟前
sola完成签到 ,获得积分10
2分钟前
DreamMaker完成签到 ,获得积分10
3分钟前
VVV完成签到,获得积分10
3分钟前
3分钟前
3分钟前
_ban发布了新的文献求助10
3分钟前
小黄鸭完成签到,获得积分10
3分钟前
滴滴哒发布了新的文献求助10
3分钟前
李李原上草完成签到 ,获得积分10
3分钟前
超级的千青完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990020
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256276
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228