A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill

抗压强度 支持向量机 硅酸盐水泥 机器学习 人工神经网络 随机森林 固化(化学) 熔渣(焊接) 水泥 人工智能 岩土工程 工程类 数学 材料科学 计算机科学 复合材料
作者
Chathuranga Balasooriya Arachchilage,Chengkai Fan,Jinshan Zhao,Guangping Huang,Wei Victor Liu
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:15 (11): 2803-2815 被引量:15
标识
DOI:10.1016/j.jrmge.2022.12.009
摘要

The unconfined compressive strength (UCS) of alkali-activated slag (AAS)-based cemented paste backfill (CPB) is influenced by multiple design parameters. However, the experimental methods are limited to understanding the relationships between a single design parameter and the UCS, independently of each other. Although machine learning (ML) methods have proven efficient in understanding relationships between multiple parameters and the UCS of ordinary Portland cement (OPC)-based CPB, there is a lack of ML research on AAS-based CPB. In this study, two ensemble ML methods, comprising gradient boosting regression (GBR) and random forest (RF), were built on a dataset collected from literature alongside two other single ML methods, support vector regression (SVR) and artificial neural network (ANN). The results revealed that the ensemble learning methods outperformed the single learning methods in predicting the UCS of AAS-based CPB. Relative importance analysis based on the best-performing model (GBR) indicated that curing time and water-to-binder ratio were the most critical input parameters in the model. Finally, the GBR model with the highest accuracy was proposed for the UCS predictions of AAS-based CPB.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助无心的平蝶采纳,获得30
1秒前
破晓之照完成签到,获得积分10
1秒前
2秒前
2秒前
meme完成签到,获得积分10
4秒前
7秒前
7秒前
8秒前
聪慧芷巧应助Amanda采纳,获得10
8秒前
10秒前
蒲云海发布了新的文献求助10
11秒前
坤坤完成签到,获得积分10
12秒前
JamesPei应助lm采纳,获得10
12秒前
打打应助massonia采纳,获得10
14秒前
15秒前
15秒前
17秒前
淡淡的丹彤完成签到 ,获得积分10
17秒前
czh12232319完成签到,获得积分10
17秒前
苏叶完成签到,获得积分10
19秒前
hui发布了新的文献求助10
19秒前
20秒前
Orange应助逃亡的小狗采纳,获得10
21秒前
程勋航完成签到,获得积分10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
核桃应助哈喽采纳,获得10
23秒前
小蘑菇应助哈喽采纳,获得10
23秒前
23秒前
英姑应助xuanxuan采纳,获得10
25秒前
26秒前
28秒前
英俊的铭应助喔喔采纳,获得10
29秒前
淇奥完成签到 ,获得积分10
30秒前
markfan完成签到,获得积分10
30秒前
35秒前
Jero完成签到 ,获得积分10
37秒前
38秒前
朝菌发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003